Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585982 | PMC |
http://dx.doi.org/10.14744/AnatolJCardiol.2020.36900 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.
ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Thoracic Surgery, Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, PRC.
Background: The localization of pulmonary nodules is crucial for surgical intervention. However, a safe, simple, and efficient method remains elusive. This study aims to evaluate the safety and feasibility of a newly developed preoperative localization method for pulmonary nodules called Rapid Localization of Pulmonary Nodules On-Site (RLPN-OS).
View Article and Find Full Text PDFWe report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems (MPS). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405, USA.
The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!