Temperature-dependent total X-ray scattering measurements for water confined in bioactive glass samples with 5.9 nm pore diameter have been performed. Based on these experimental data, simulations were carried out using the Empirical Potential Structure Refinement (EPSR) code, in order to study the structural organization of the confined water in detail. The results indicate a non-homogeneous structure for water inside the pore, with three different structural organizations of water, depending on the distance from the pore surface: (i) a first layer (4 Å) of interfacial pore water that forms a strong chemical bond with the substrate, (ii) intermediate pore water forming a second layer (4-11 Å) on top of the interfacial pore water, (iii) bulk-like pore water in the centre of the pores. Analysis of the simulated site-site partial pair distribution function shows that the water-silica (O-Si) pair correlations occur at ∼3.75 Å. The tetrahedral network of bulk water with oxygen-oxygen (O-O) hydrogen-bonded pair correlations at ∼2.8, ∼4.1 and ∼4.5 Å is strongly distorted for the interfacial pore water while the second neighbour pair correlations are observed at ∼4.0 and ∼4.9 Å. For the interfacial pore water, an additional O-O pair correlation appears at ∼3.3 Å, which is likely caused by distortions due to the interactions of the water molecules with the silica at the pore surface.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053273320007834DOI Listing

Publication Analysis

Top Keywords

pore water
24
interfacial pore
16
water
13
pair correlations
12
pore
10
x-ray scattering
8
water confined
8
confined bioactive
8
pair distribution
8
distribution function
8

Similar Publications

Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.

View Article and Find Full Text PDF

Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.

View Article and Find Full Text PDF

Molecular Simulation Study of All-Silica Zeolites for the Adsorptive Removal of Airborne Chloroethenes.

Langmuir

January 2025

Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.

Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.

View Article and Find Full Text PDF

Surface Complexation and Packed Bed Mass Transport Models Enable Adsorbent Design for Arsenate and Vanadate Removal.

ACS ES T Eng

October 2024

School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.

Article Synopsis
  • Co-occurrence of metal oxo-anions like arsenate in drinking water can be harmful to human health, motivating the study of how to better predict their behavior in adsorption systems.
  • By integrating surface complexation models with pore surface diffusion models, researchers accurately predicted the adsorption behaviors of single and mixed solutes, helping to understand how different adsorbents interact with these contaminants.
  • The findings emphasized that enhancing the capacity and reactivity of adsorbents is more effective for improving water purification systems than merely focusing on pore design to minimize transport limitations.
View Article and Find Full Text PDF

Hydrophobic dual-polymer-reinforced graphene composite aerogel for efficient water-oil separation.

RSC Adv

January 2025

Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 P. R. China

Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!