On Cayley graphs of {\bb Z}^4.

Acta Crystallogr A Found Adv

Theoretische Chemie, Technische Universität Dresden, Bergstraße 66c, Dresden, 01062, Germany.

Published: September 2020

AI Article Synopsis

Article Abstract

The generating sets of {\bb Z}^4 have been enumerated which consist of integral four-dimensional vectors with components -1, 0, 1 and allow Cayley graphs without edge intersections in a straight-edge embedding in a four-dimensional Euclidean space. Owing to computational restrictions the valency of enumerated graphs has been fixed to 10. Up to isomorphism 58 graphs have been found and characterized by coordination sequences, shortest cycles and automorphism groups. To compute automorphism groups, a novel strategy is introduced that is based on determining vertex stabilizers from the automorphism group of a sufficiently large finite ball cut out from an infinite graph. Six exceptional, rather `dense' graphs have been identified which are locally isomorphic to a five-dimensional cubic lattice within a ball of radius 10. They could be built by either interconnecting interpenetrated three- or four-dimensional cubic lattices and therefore necessarily contain Hopf links between quadrangular cycles. As a consequence, a local combinatorial isomorphism does not extend to a local isotopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459770PMC
http://dx.doi.org/10.1107/S2053273320007159DOI Listing

Publication Analysis

Top Keywords

cayley graphs
8
{\bb z}^4
8
automorphism groups
8
graphs {\bb
4
z}^4 generating
4
generating sets
4
sets {\bb
4
z}^4 enumerated
4
enumerated consist
4
consist integral
4

Similar Publications

In graph theory, a topological index is a numerical value that is in good correlation with certain physical properties of a molecule. It serves as an indicator of how a chemical structure behaves. The Shannon's entropy describes a comparable loss of data in information transmission networks.

View Article and Find Full Text PDF

A finite group is called -quasirandom (by Gowers) if all non-trivial irreducible complex representations of have dimension at least . For any unit function on a finite group we associate the on the group given by the absolute value squared of the function. We show that if a group is highly quasirandom, in the above sense, then any Cayley graph of this group has an orthonormal eigenbasis of the adjacency operator such that the quantum probability measures of the eigenfunctions put close to the correct proportion of their mass on suitably selected subsets of the group that are not too small.

View Article and Find Full Text PDF

We devise an analytical method to deal with a class of nonlinear Schrödinger lattices with random potential and subquadratic power nonlinearity. An iteration algorithm is proposed based on the multinomial theorem, using Diophantine equations and a mapping procedure onto a Cayley graph. Based on this algorithm, we are able to obtain several hard results pertaining to asymptotic spreading of the nonlinear field beyond a perturbation theory approach.

View Article and Find Full Text PDF

A well-known conjecture of Alspach says that every -regular Cayley graph of a finite abelian group can be decomposed into Hamiltonian cycles. We consider an analogous question for infinite abelian groups. In this setting one natural analogue of a Hamiltonian cycle is a spanning double-ray.

View Article and Find Full Text PDF

We investigate the relationship between one of the classical notions of boundaries for infinite graphs, , and self-adjoint extensions of the minimal Kirchhoff Laplacian on a metric graph. We introduce the notion of for ends of a metric graph and show that finite volume graph ends is the proper notion of a boundary for Markovian extensions of the Kirchhoff Laplacian. In contrast to manifolds and weighted graphs, this provides a transparent geometric characterization of the uniqueness of Markovian extensions, as well as of the self-adjointness of the Gaffney Laplacian - the underlying metric graph does not have finite volume ends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!