Atmospheric dust can play a very important role in the polluted atmosphere. This has a direct impact on human health, global warming, climate change, visibility, precipitation, cloud formation, and so on. To evaluate the atmospheric dustfall rate and their mineralogical aspects, three separate sites were selected, namely mining, suburban, and control for dust sampling. Dustfall samples were collected at monthly intervals from copper and iron mining areas, in Singhbhum, India. The average atmospheric dustfall rate varied from 7.51 to 28.58 g/m/month, and 7.40 to 26.37 g/m/month during the summer and winter seasons, respectively, in the copper mining areas. At the same time, an average atmospheric dustfall rate varied from 7.23 to 76.99 g/m/month during summer season and 6.48 to73.92 g/m/month during the winter season in the iron mining area. The major minerals identified by X-ray diffraction (XRD) analysis of dustfall samples from copper mining area were quartz, kaolinite, pyrite, albite, and magnesio hornblende. However, in the case of iron mining area, the major minerals found were quartz, cristobalite, hematite, magnetite, biotite, albite, ilmenete, pyrite, rutile, and dolomite. Overall, the intensity of dust pollution is greater in the vicinity of mining and industrial sites of the copper and iron mining areas. : The study has been conducted in the copper and iron mining areas of East and West Singhbhum districts of Jharkhand state, respectively. The aim of the present study was twofold, namely, (i) to evaluate the dustfall rates (ii) and to characterize the mineralogy of atmospheric dust. East and West Singhbhum are the significantly industrialized areas of India known for the mining of copper and iron ores, steel production, power generation, and other related activities. In order to improve local people's living conditions, there is an urgent need for baseline data of dust pollution and its general characteristics based on scientific disclosures to allow policy recommendations and their implementation. Therefore, the study falls within the scope of the journal. The atmospheric dustfall rates were found to be higher during the summer season due to increased dispersion caused by the high wind speed during the summer season. During the winter season, lower rates were observed due to monsoonal rainfall washout and higher relative humidity, which reduces dust resuspension. However, the present study considered the extent of dustfall rates and their mineral characteristics. An immediate need arises to regularly monitor the dust pollution and to implement suitable dust control system like wet dust suppression and airborne dusts capture for dust abatement.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2020.1818647DOI Listing

Publication Analysis

Top Keywords

iron mining
24
copper iron
20
mining areas
20
atmospheric dustfall
16
atmospheric dust
12
dustfall rate
12
summer season
12
mining area
12
dust pollution
12
dustfall rates
12

Similar Publications

The goaf formed by mining and other activities is prone to safety hazards. Preparing high-quality and low-cost solidified iron tailings powder (SITP) is an important way to ensure backfill quality and eliminate safety hazards. Using iron tailings powder near the goaf of in Shanxi, comparative experiments were conducted to evaluate the the flowability, stone rate, strength, and water stability of newly mixed SITP under different types and dosages of curing agent, and mixing methods.

View Article and Find Full Text PDF

Chemical associations of selenium oxyanions in metal oxides derived from layered double hydroxides: Implication for the immobilization of radionuclides.

Environ Res

January 2025

School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8050, Japan; Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan. Electronic address:

Layered double hydroxides (LDHs) can effectively stabilize Se oxyanions, yet the thermal stability of Se oxyanions incorporated into LDHs remains unclear. In this study, calcination products of three types of LDHs loaded with SeO or SeO were analyzed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray absorption fine structure spectroscopy (XAFS) and leaching tests. It has been found that SeO can be reduced to SeO in the Fe-containing LDHs after calcination at temperatures above 450 °C.

View Article and Find Full Text PDF

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.

View Article and Find Full Text PDF

Biomonitoring of the Paraopeba river: Cytotoxic, genotoxic and metal concentration analysis three years after the Brumadinho dam rupture - Minas Gerais, Brazil.

Sci Total Environ

January 2025

Laboratório de Análises Genéticas, Departamento de Ciências Naturais e da Terra, Universidade do Estado de Minas Gerais, Divinópolis, MG 35501-170, Brazil. Electronic address:

The rupture of Vale S.A. mining tailings dam in Brumadinho, Brazil, in January 2019 had significant environmental impacts on the Paraopeba River basin.

View Article and Find Full Text PDF

Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!