Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing.

Anal Chem

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China.

Published: October 2020

Design of highly active carbon nanozymes and further establishment of ultrasensitive biosensors remain a challenge. Herein, hierarchically porous carbon nanozymes with sulfur (S)/nitrogen (N) codoping (SNC) were developed. Compared with N-doped carbon (NC) nanozymes, SNC nanozymes have a smaller Michaelis-Menten constant and higher specific activities, demonstrating that the S-doping in SNC nanozymes could not only enhance their affinity toward substrates but also improve their catalytic performance. These results may be caused by the synergistic effect of heteroatoms (S and N). Because of the good enzyme-like activity, the proposed SNC nanozymes were exploited to the colorimetric detection of the total antioxidant capacity (TAC) using ascorbic acid as a typical model with a limit of detection of 0.08 mM. Because of its high sensitivity and selectivity and encouraging performance, the detection method presented practical feasibility for the TAC assay in commercial beverages. This work paves a way to design the highly active carbon nanozymes and expand their applications in the construction of high-performance biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c02982DOI Listing

Publication Analysis

Top Keywords

carbon nanozymes
20
snc nanozymes
12
hierarchically porous
8
nanozymes
8
total antioxidant
8
antioxidant capacity
8
design highly
8
highly active
8
active carbon
8
carbon
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!