We report the observation of electron spin polarization transfer from the triplet state of a porphyrin to a weakly coupled nitroxide radical in a mutant of human neuroglobin (NGB). The native iron-containing heme substrate of NGB has been substituted with Zn(ii) protoporphyrin IX and the nitroxide has been attached via site-directed spin labeling to the Cys120 residue. A reference synthetic polypeptide with free base tetraphenylporphyrin and a nitroxide bound to it is also studied. In both systems the nitroxide and the porphyrin are held at a fixed distance of approximately 2.4 nm. The transient EPR data of the NGB sample show that the triplet state of Zn(ii) protoporphyrin acquires significant net polarization, which is attributed to the dynamic Jahn-Teller effect. As the spin polarization of the protoporphyrin triplet state decays, a polarized EPR signal of the nitroxide arises. In contrast, the free base porphyrin in the reference polypeptide does not acquire net polarization and no polarization of the nitroxide label is observed. This is likely a result of the fact that the porphyrin is not Jahn-Teller active because of its lower symmetry. A perturbation theory treatment suggests that in the NGB sample, the polarization of the radical occurs by the transfer of net polarization from the triplet state. This process is also enhanced by the spectral broadening caused by the back and forth transitions associated with the dynamic Jahn-Teller effect. We propose that the novel transfer of polarization to the radical could be exploited to enhance the sensitivity of light-induced dipolar spectroscopy experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03565cDOI Listing

Publication Analysis

Top Keywords

triplet state
16
spin polarization
12
net polarization
12
polarization
9
electron spin
8
polarization transfer
8
weakly coupled
8
znii protoporphyrin
8
free base
8
ngb sample
8

Similar Publications

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

Localized and Excimer Triplet Electronic States of Naphthalene Dimers: A Computational Study.

Molecules

January 2025

Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.

We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance.

View Article and Find Full Text PDF

Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g.

View Article and Find Full Text PDF

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

Triplet-ground-state nonalternant nanographene with high stability and long spin lifetimes.

Nat Commun

January 2025

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.

High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!