SARS-CoV-2 has caused a severe, ongoing outbreak of COVID-19 in Massachusetts with 111,070 confirmed cases and 8,433 deaths as of August 1, 2020. To investigate the introduction, spread, and epidemiology of COVID-19 in the Boston area, we sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region, including nearly all confirmed cases within the first week of the epidemic and hundreds of cases from major outbreaks at a conference, a nursing facility, and among homeless shelter guests and staff. The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission, including outbreaks in homeless populations, and was exported to several other domestic and international sites. The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into MA early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457619 | PMC |
http://dx.doi.org/10.1101/2020.08.23.20178236 | DOI Listing |
Atheroscler Plus
March 2025
Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, and Tufts University School of Medicine, Boston, MA, 711 Washington Street, 02111, USA.
Background And Aims: The prevalence of metabolic dysfunction associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), has become a significant public health concern with an increased atherosclerotic cardiovascular disease risk. This study investigates the impact of NAFLD-related single nucleotide polymorphisms (SNPs) on carotid atherosclerosis development in a Japanese population without diabetes, dyslipidemia, and hypertension.
Methods: The prospective observational study, part of the Kyushu and Okinawa Population Study (KOPS), included 945 participants (median age 55 [47, 63]) without carotid atherosclerosis, increased alcohol intake, diabetes, dyslipidemia, hypertension, or chronic hepatitis at baseline.
J Child Neurol
January 2025
Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
Background: Cardiac catheterization in children with heart disease is associated with an increased risk of arterial ischemic stroke. We created and evaluated the diagnostic performance of a bedside screening tool administered postprocedure to identify arterial ischemic stroke.
Methods: We developed a postprocedure stroke screen comprising history of stroke, responsiveness, command following, speech, facial and limb strength symmetry, new seizure, and caregiver concern.
Global Spine J
January 2025
Spine Surgery Program, Department of Surgery, McGill University, Montreal, QC, Canada.
Study Design: Systematic review and clinimetric analysis.
Objectives: Frailty and sarcopenia predict worse surgical outcomes among spinal degenerative and deformity-related populations; this association is less clear in the context of spinal oncology. Here, we sought to identify frailty and sarcopenia tools applied in spinal oncology and appraise their clinimetric properties.
Global Spine J
January 2025
Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
Study Design: Narrative Review.
Objective: Contextualized by a narrative review of recent literature, we propose a wound complication prevention and management algorithm for spinal oncology patients. We highlight available strategies and motivate future research to identify optimal and individualized wound management for this population.
Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward identifying high-risk patients, understanding neurological symptoms, evaluating treatment effects, and predicting outcomes. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!