Monoclonal antibody (mAb) 10E8 recognizes a highly conserved epitope on HIV and is capable of neutralizing > 95% of circulating viral isolates making it one of the most promising Abs against HIV. Solution instability and biochemical heterogeneity of 10E8 has hampered its development for clinical use. We identify the source of 10E8 heterogeneity being linked to cis/trans isomerization at two prolines within the YPP motif in the CRD3 loop that exists as two predominant conformers that interconvert on a slow timescale. The YP conformation conformer can bind the HIV gp41 epitope, while the YP is not binding competent and shows a higher aggregation propensity. The high barrier of isomerization and propensity to adopt non-binding competent proline conformers provides novel insight into the slow binding kinetics, low potency, and poor solubility of 10E8. This study highlights how proline isomerization should be considered a critical quality attribute for biotherapeutics with paratopes containing potential cis proline amide bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458915 | PMC |
http://dx.doi.org/10.1038/s41598-020-71184-7 | DOI Listing |
Methods Mol Biol
January 2025
Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.
View Article and Find Full Text PDFBiopolymers
January 2025
Department of Chemistry, Faculty of Engineering and Science, Bursa Technical University, Bursa, Turkey.
Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemistry and Biochemistry, University of California, Merced, CA 95343.
The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA.
The mitochondrial permeability transition pore (mPTP) is implicated in cardiac ischemia-reperfusion (I/R) injury. During I/R, elevated mitochondrial Ca triggers mPTP opening, leading to necrotic cell death. Although nonessential regulators of this pore are characterized, the molecular identity of the pore-forming component remains elusive.
View Article and Find Full Text PDFChemistry
December 2024
Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!