This study investigated the chemical profiles of fine urban road dust as a set of indicators for major air pollutants at sampling sites or as proxies for potential human health impacts. We examined the chemical compositions of fine particles (< 100 μm) or re-suspended ultrafine particles (< 2.5 μm) in the urban road dust collected from the cities with major emission sources of CO, NH, NO, PM, SO, and volatile organic compounds. The elemental compositions, including metal contents and volatile or semi-volatile organic compound species were determined to constitute comprehensive chemical profiles of the solid road dust samples. The water-extractable organic compounds and fluorescent species of the size-fractionated re-suspended fine particulate matter (RPM) were also incorporated in the chemical profiles. The metal content and aliphatic hydrocarbons could partly distinguish emission sources, and clearer distinctions were achieved with the inclusion of fluorescence excitation-emission matrix (EEM) results. The dose-response test results showed positive correlations between cytotoxicity and relative abundance of hydrocarbons or metal contents of urban road dust. The set of chemical profiles suggested in this study could be further utilized for site identification or human health impact assessment using urban road dust.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459106 | PMC |
http://dx.doi.org/10.1038/s41598-020-71180-x | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Department of Children Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, No.416 of Chengnan East Road, Yuhua District, Changsha, Hunan, 410007, China.
Accumulating evidence has shown that long-term exposure to particulate matter with aerodynamic diameter of less than 2.5 μm (PM2.5) causes Th1/Th2 imbalance and increases the risk of allergic asthma (AA) in children.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Saxon State Office for Environment, Agriculture and Geology, Halsbrückerstr. 31a, Freiberg 09599, Germany.
Historical mining towns face financial challenges with the proposed Soil Monitoring Law of the European Union, which will require the management of soil contamination, since remediating soil in densely populated towns and cities is challenging. We compared the environmental impact of sulfide ore mining in the urban area of Outokumpu in Finland with that of other European sites, focusing on soil contamination. Soil sampling revealed that mine tailings were historically used in road construction.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic.
View Article and Find Full Text PDFCurr Biol
December 2024
Marine Core Research Institute (MaCRI), Kochi University, 200 Monobe-otsu, Nankoku, Kochi 783-8502, Japan.
The deep-time development of the Southern Ocean's deep-sea ecosystem remains poorly understood, despite being a key region in global ecological, climatological, and oceanographic systems, where deep water forms and biodiversity is unexpectedly high. Here, we present an ∼500,000-year fossil record of the deep-sea Southern Ocean ecosystem in the subantarctic zone. The results indicate that changes in surface productivity and the resulting food supply to the deep sea, driven by eolian dust input and iron fertilization, along with changes in bottom-water temperature influenced by deep-water circulation, have controlled the deep-sea ecosystem in the Southern Ocean on orbital (10-10 years) timescales following the Mid-Brunhes event (MBE), a major climatic transition ∼430,000 years ago.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!