Signal amplification by reversible exchange for COVID-19 antiviral drug candidates.

Sci Rep

Department of Chemistry, Korea Military Academy, Seoul, 01805, South Korea.

Published: August 2020

Several drug candidates have been proposed and tested as the latest clinical treatment for coronavirus pneumonia (COVID-19). Chloroquine, hydroxychloroquine, ritonavir/lopinavir, and favipiravir are under trials for the treatment of this disease. The hyperpolarization technique has the ability to further provide a better understanding of the roles of these drugs at the molecular scale and in different applications in the field of nuclear magnetic resonance/magnetic resonance imaging. This technique may provide new opportunities in diagnosis and research of COVID-19. Signal amplification by reversible exchange-based hyperpolarization studies on large-sized drug candidates were carried out. We observed hyperpolarized proton signals from whole structures, due to the unprecedented long-distance polarization transfer by para-hydrogen. We also found that the optimal magnetic field for the maximum polarization transfer yield was dependent on the molecular structure. We can expect further research on the hyperpolarization of other important large molecules, isotope labeling, as well as polarization transfer on nuclei with a long spin relaxation time. A clinical perspective of these features on drug molecules can broaden the application of hyperpolarization techniques for therapeutic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459298PMC
http://dx.doi.org/10.1038/s41598-020-71282-6DOI Listing

Publication Analysis

Top Keywords

drug candidates
12
polarization transfer
12
signal amplification
8
amplification reversible
8
reversible exchange
4
exchange covid-19
4
covid-19 antiviral
4
drug
4
antiviral drug
4
candidates drug
4

Similar Publications

This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.

View Article and Find Full Text PDF

The gut microbiota, an extensive ecosystem harboring trillions of bacteria, plays a pivotal role in human health and disease, influencing diverse conditions from obesity to cancer. Among the microbiota's myriad functions, the capacity to metabolize drugs remains relatively unexplored despite its potential implications for drug efficacy and toxicity. Experimental methods are resource-intensive, prompting the need for innovative computational approaches.

View Article and Find Full Text PDF

The relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials.

View Article and Find Full Text PDF

Drugs must accumulate at their target site to be effective, and inadequate uptake of drugs is a substantial barrier to the design of potent therapies. This is particularly true in the development of antibiotics, as bacteria possess numerous barriers to prevent chemical uptake. Designing compounds that circumvent bacterial barriers and accumulate to high levels in cells could dramatically improve the success rate of antibiotic candidates.

View Article and Find Full Text PDF

Benchmarking is an important step in the improvement, assessment, and comparison of the performance of drug discovery platforms and technologies. We revised the existing benchmarking protocols in our Computational Analysis of Novel Drug Opportunities (CANDO) multiscale therapeutic discovery platform to improve utility and performance. We optimized multiple parameters used in drug candidate prediction and assessment with these updated benchmarking protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!