Background: Colorectal cancer and IBD account for a large portion of the practice of colorectal surgery. Historical research models have provided insights into the underlying causes of these diseases but come with many limitations.
Objective: The aim of this study was to systematically review the literature regarding the advantage of organoid models in modeling benign and malignant colorectal pathology.
Data Sources: Sources included PubMed, Ovid-Medline, and Ovid Embase STUDY SELECTION:: Two reviewers completed a systematic review of the literature between January 2006 and January of 2020 for studies related to colon and intestinal organoids. Reviews, commentaries, protocols, and studies not performed in humans or mice were excluded.
Results: A total of 73 articles were included. Organoid models of colorectal disease have been rising in popularity to further elucidate the genetic, transcriptomic, and treatment response of these diseases at the individual level. Increasingly complex models utilizing coculture techniques are being rapidly developed that allow in vitro recapitulation of the disease microenvironment.
Limitations: This review is only qualitative, and the lack of well utilized nomenclature in the organoid community may have resulted in the exclusion of articles.
Conclusions: Historical disease models including cell lines, patient-derived tumor xenografts, and animal models have created a strong foundation for our understanding of colorectal pathology. Recent advances in 3-dimensional cell cultures, in the form of patient-derived epithelial organoids and induced human intestinal organoids have opened a new avenue for high-resolution analysis of pathology at the level of an individual patient. Recent research has shown the potential of organoids as a tool for personalized medicine with their ability to retain patient characteristics, including treatment response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547902 | PMC |
http://dx.doi.org/10.1097/DCR.0000000000001806 | DOI Listing |
Oncogene
January 2025
Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.
View Article and Find Full Text PDFLab Invest
January 2025
Université de Caen Normandie, INSERM U1086 ANTICIPE, Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France; Université de Caen Normandie, US PLATON- ORGAPRED core facility, Caen, France; Université de Caen Normandie, US PLATON, UNICANCER, Comprehensive Cancer Center François Baclesse- Biological Resource Center 'OvaRessources', Caen, France. Electronic address:
PARP inhibitors (PARPi) have been shown to improve progression-free survival, particularly in homologous recombination deficient (HRD) ovarian cancers. Identifying patients eligible to PARPi is currently based on next-generation sequencing (NGS), but the persistence of genomic scars in tumors after restoration of HR or epigenetic changes can be a limitation. Functional assays could thus be used to improve this profiling and faithfully identify HRD tumors.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China.
Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy and Food, Southwest Minzu University, Chengdu 610093, China.
Hepatic fibrosis (HF) is an important pathological state in the progression of chronic liver disease to end-stage liver disease and is usually triggered by alcohol, nonalcoholic fatty liver, chronic hepatitis viruses, autoimmune hepatitis (AIH), or cholestatic liver disease. Research on novel therapies has become a hot topic due to the reversibility of HF. Research into the molecular mechanisms of the pathology of HF and potential drug screening relies on reliable and rational biological models, mainly including animals and cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!