Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Considering the increasing popularity of electronic learning, particularly smartphone-based mobile learning, and its reportedly optimal efficacy for instruction of complicated topics, this study aimed to compare the efficacy of smartphone-based mobile learning versus lecture-based learning for instruction of cephalometric landmark identification.
Methods: This quasi-experimental interventional study evaluated 53 dental students (4th year) in two groups of intervention (n = 27; smartphone instruction using an application) and control (n = 26, traditional lecture-based instruction). Two weeks after the instructions, dental students were asked to identify four landmarks namely the posterior nasal spine (PNS), orbitale (Or), articulare (Ar) and gonion (Go) on lateral cephalograms. The mean coordinates of each landmark identified by orthodontists served as the reference point, and the mean distance from each identified point to the reference point was reported as the mean consistency while the standard deviation of this mean was reported as the precision of measurement. Data were analyzed using SPSS version 18 via independent sample t-test.
Results: No significant difference was noted between the two groups in identification of PNS, Ar or Go (P > 0.05). However, the mean error rate in identification of Or was significantly lower in smartphone group compared with the traditional learning group (P = 0.020).
Conclusions: Smartphone-based mobile learning had a comparable, and even slightly superior, efficacy to lecture-based learning for instruction of cephalometric landmark identification, and may be considered, at least as an adjunct, to enhance the instruction of complicated topics.
Trial Registration Number: This is not a human subject research. https://ethics.
Research: ac.ir/ProposalCertificateEn.php?id=33714&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457473 | PMC |
http://dx.doi.org/10.1186/s12909-020-02201-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!