Background: Pulmonary embolism (PE) is a common life-threatening condition with non-specific clinical presentations. The diagnosis of PE depends highly on imaging studies, which may also provide prognostic information. This study aimed to describe the clinical and imaging profiles of patients with PE, emphasizing the differences between central and peripheral PE.
Methods: After ethics review board approval, this retrospective observational study examined the non-negative results in adult patients who underwent computed tomography pulmonary angiography (CT-PA) at our hospital between May 2016 and December 2019. Demographic and clinical information and imaging findings were collected from the electronic medical records.
Results: The study included 85 cases that were identified after re-interpreting the 103 non-negative CT-PA scans. Six cases were excluded for incomplete data and 12 cases were false-positive. Central PE was found in 63.5% of the cases. Obesity was the most common risk factor seen in 37.6% of the cases. Furthermore, 9.4% of the patients had sickle cell disease, which tended to be associated with peripheral PE. There was no difference between the peripheral and central PE in most clinical and imaging parameters evaluated (P > 0.05). However, patients with isolated subsegmental PE were more likely to develop hemoptysis (P = 0.04).
Conclusion: This study suggests that patients with obesity and sickle cell disease constitute an important proportion of all PE cases. Furthermore, the clinical and imaging profiles in patients with peripheral PE are similar to those in patients with central PE. Future research should focus on the clinical value of peripheral PE in patients with sickle cell disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457516 | PMC |
http://dx.doi.org/10.1186/s12245-020-00303-y | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
Acc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Laboratory of NeuroImaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
Importance: Cannabis use has increased globally, but its effects on brain function are not fully known, highlighting the need to better determine recent and long-term brain activation outcomes of cannabis use.
Objective: To examine the association of lifetime history of heavy cannabis use and recent cannabis use with brain activation across a range of brain functions in a large sample of young adults in the US.
Design, Setting, And Participants: This cross-sectional study used data (2017 release) from the Human Connectome Project (collected between August 2012 and 2015).
J Magn Reson Imaging
January 2025
ImageWorks LLC, Shaker Heights, Ohio, USA.
Geroscience
January 2025
State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
Biological brain age is a brain-predicted age using machine learning to indicate brain health and its associated conditions. The presence of an older predicted brain age relative to the actual chronological age is indicative of accelerated aging processes. Consequently, the disparity between the brain's chronological age and its predicted age (brain-age gap) and the factors influencing this disparity provide critical insights into cerebral health dynamics during aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!