A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CNN Training with Twenty Samples for Crack Detection via Data Augmentation. | LitMetric

CNN Training with Twenty Samples for Crack Detection via Data Augmentation.

Sensors (Basel)

State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China.

Published: August 2020

The excellent generalization ability of deep learning methods, e.g., convolutional neural networks (CNNs), depends on a large amount of training data, which is difficult to obtain in industrial practices. Data augmentation is regarded commonly as an effective strategy to address this problem. In this paper, we attempt to construct a crack detector based on CNN with twenty images via a two-stage data augmentation method. In detail, nine data augmentation methods are compared for crack detection in the model training, respectively. As a result, the rotation method outperforms these methods for augmentation, and by an in-depth exploration of the rotation method, the performance of the detector is further improved. Furthermore, data augmentation is also applied in the inference process to improve the recall of trained models. The identical object has more chances to be detected in the series of augmented images. This trick is essentially a performance-resource trade-off. For more improvement with limited resources, the greedy algorithm is adopted for searching a better combination of data augmentation. The results show that the crack detectors trained on the small dataset are significantly improved via the proposed two-stage data augmentation. Specifically, using 20 images for training, recall in detecting the cracks achieves 96% and Fext(0.8), which is a variant of F-score for crack detection, achieves 91.18%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506713PMC
http://dx.doi.org/10.3390/s20174849DOI Listing

Publication Analysis

Top Keywords

data augmentation
28
crack detection
12
data
8
augmentation
8
two-stage data
8
rotation method
8
crack
5
cnn training
4
training twenty
4
twenty samples
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!