ZnO nanowire-based surface plasmon polariton (SPP) nanolasers with metal-insulator-semiconductor hierarchical nanostructures have emerged as potential candidates for integrated photonic applications. In the present study, we demonstrated an SPP nanolaser consisting of ZnO nanowires coupled with a single-crystalline aluminum (Al) film and a WO dielectric interlayer. High-quality ZnO nanowires were prepared using a vapor phase transport and condensation deposition process via catalyzed growth. Subsequently, prepared ZnO nanowires were transferred onto a single-crystalline Al film grown by molecular beam epitaxy (MBE). Meanwhile, a WO dielectric interlayer was deposited between the ZnO nanowires and Al film, via e-beam technique, to prevent the optical loss from dominating the metallic region. The metal-oxide-semiconductor (MOS) structured SPP laser, with an optimal WO insulating layer thickness of 3.6 nm, demonstrated an ultra-low threshold laser operation (lasing threshold of 0.79 MW cm). This threshold value was nearly eight times lower than that previously reported in similar ZnO/AlO/Al plasmonic lasers, which were ≈2.4 and ≈3 times suppressed compared to the SPP laser, with WO insulating layer thicknesses of 5 nm and 8 nm, respectively. Such suppression of the lasing threshold is attributed to the WO insulating layer, which mediated the strong confinement of the optical field in the subwavelength regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557600PMC
http://dx.doi.org/10.3390/nano10091680DOI Listing

Publication Analysis

Top Keywords

zno nanowires
20
spp laser
12
insulating layer
12
single-crystalline aluminum
8
aluminum film
8
laser operation
8
dielectric interlayer
8
lasing threshold
8
zno
6
threshold
5

Similar Publications

Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Advancement in piezoelectric nanogenerators for acoustic energy harvesting.

Microsyst Nanoeng

December 2024

Department of Computer and Information Engineering, Khalifa University, Abu Dhabi, 12778, UAE.

The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting.

View Article and Find Full Text PDF

Neuromorphic computing, inspired by the brain, holds significant promise for advancing artificial intelligence. Artificial optoelectronic synapses, which can convert optical signals into electrical signals, play a crucial role in neuromorphic computing. In this study, we successfully fabricated a flexible artificial optoelectronic synapse device based on the ZnO/PDMS structure by utilizing the magnetron sputtering technique to deposit the ZnO film on a flexible substrate.

View Article and Find Full Text PDF

Hydrogen Production and Li-Ion Battery Performance with MoS-SiNWs-SWNTs@ZnONPs Nanocomposites.

Nanomaterials (Basel)

November 2024

Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!