Seizures are life-threatening adverse drug reactions which are investigated late in drug development using rodent models. Consequently, if seizures are detected, a lot of time, money and animals have been used. Thus, there is a need for in vitro screening models using human cells to circumvent interspecies translation. We assessed the suitability of cocultures of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared with rodent primary cortical cultures for in vitro seizure liability assessment using microelectrode arrays. hiPSC-derived and rodent primary cortical neuronal cocultures were exposed to 9 known (non)seizurogenic compounds (pentylenetetrazole, amoxapine, enoxacin, amoxicillin, linopirdine, pilocarpine, chlorpromazine, phenytoin, and acetaminophen) to assess effects on neuronal network activity using microelectrode array recordings. All compounds affect activity in hiPSC-derived cocultures. In rodent primary cultures all compounds, except amoxicillin changed activity. Changes in activity patterns for both cell models differ for different classes of compounds. Both models had a comparable sensitivity for exposure to amoxapine (lowest observed effect concentration [LOEC] 0.03 µM), linopirdine (LOEC 1 µM), and pilocarpine (LOEC 0.3 µM). However, hiPSC-derived cultures were about 3 times more sensitive for exposure to pentylenetetrazole (LOEC 30 µM) than rodent primary cortical cultures (LOEC 100 µM). Sensitivity of hiPSC-derived cultures for chlorpromazine, phenytoin, and enoxacin was 10-30 times higher (LOECs 0.1, 0.3, and 0.1 µM, respectively) than in rodent cultures (LOECs 10, 3, and 3 µM, respectively). Our data indicate that hiPSC-derived neuronal cocultures may outperform rodent primary cortical cultures with respect to detecting seizures, thereby paving the way towards animal-free seizure assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657345 | PMC |
http://dx.doi.org/10.1093/toxsci/kfaa136 | DOI Listing |
Alzheimers Dement
December 2024
Korea Institute of Science and Technology, Seoul, Korea, Republic of (South).
Background: Blood GFAP levels have the potential to reflect and predict worsening disability in individuals with degenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Recently published research suggests that blood GFAP levels can be used to detect even subtle damage to the degenerative disease. In this study, we evaluated the effectiveness of the KDS2010 (MAO-B inhibitor) drug targeting AD by measuring blood glial fibrillary acidic protein (GFAP) levels in APP/PS1 mice using a magnetic bead-based electrochemical sensor.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky College of Medicine, Lexington, KY, USA.
Background: We have been investigating in vivo astrocytic Ca homeostasis in the primary somatosensory cortex (S1) of awake, head-restrained ambulating mice using two-photon technology. Prior results from our lab were obtained in neurons across aging, and in male and female C57Bl6/J mice (Case et al., 2023).
View Article and Find Full Text PDFBackground: While the formation of β-amyloid plaques and neurofibrillary "tau" tangles are considered hallmarks of AD pathology, therapeutic targeting of these pathways has been unsuccessful, highlighting the necessity to define the underlying molecular mechanisms driving AD progression. Previous studies from our lab demonstrated that mitochondrial calcium (Ca) overload through neuronal ablation of the mitochondrial Na/Ca exchanger (NCLX) is sufficient to trigger 'AD-like' pathology, including mitochondrial dysfunction, amyloid deposition and tau pathology, and cognitive decline. In addition, we found significant proteomic remodeling of components of the mitochondrial calcium uniporter channel (mtCU), the primary mediator of Ca uptake, in frontal cortex samples isolated post-mortem from patients diagnosed with non-familial/sporadic AD.
View Article and Find Full Text PDFBackground: Hyperphosphorylation and aggregation of neuronal tau protein is a primary pathological hallmark of Alzheimer's disease (AD) and primary tauopathies. The accumulation of aggregated tau as neurofibrillary tangles (NFTs) is closely correlated with neurodegeneration and cognitive decline. Key phosphorylation sites on tau have been established as early biomarkers for disease detection and prediction, with various phosphorylation sites differentially appearing across diseases and disease stages.
View Article and Find Full Text PDFBackground: Antibody-drug conjugates (ADCs) represent a major advancement in oncology to deliver selectively cytotoxic drug to tumor cells while reducing their exposure to normal tissues. Each ADC consists of a monoclonal antibody (mAb) selective to a tumor specific/overexpressed surface antigen conjugated to the cytotoxic agent. In this study, we are investigating the potential of an ADC approach in neurodegenerative diseases (NDD) to increase the exposure of therapeutic mAbs in the brain using small molecules known to be brain penetrant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!