Context: Distinct from the muscle atrophy that develops from inactivity or disuse, atrophy that occurs after traumatic joint injury continues despite the patient being actively engaged in exercise. Recognizing the multitude of factors and cascade of events that are present and negatively influence the regulation of muscle mass after traumatic joint injury will likely enable clinicians to design more effective treatment strategies. To provide sports medicine practitioners with the best strategies to optimize muscle mass, the purpose of this clinical review is to discuss the predominant mechanisms that control muscle atrophy for disuse and posttraumatic scenarios, and to highlight how they differ.

Evidence Acquisition: Articles that reported on disuse atrophy and muscle atrophy after traumatic joint injury were collected from peer-reviewed sources available on PubMed (2000 through December 2019). Search terms included the following: OR OR OR AND OR OR OR OR OR .

Study Design: Clinical review.

Level Of Evidence: Level 5.

Results: We highlight that (1) muscle atrophy after traumatic joint injury is due to a broad range of atrophy-inducing factors that are resistant to standard resistance exercises and need to be effectively targeted with treatments and (2) neurological disruptions after traumatic joint injury uncouple the nervous system from muscle tissue, contributing to a more complex manifestation of muscle loss as well as degraded tissue quality.

Conclusion: Atrophy occurring after traumatic joint injury is distinctly different from the muscle atrophy that develops from disuse and is likely due to the broad range of atrophy-inducing factors that are present after injury. Clinicians must challenge the standard prescriptive approach to combating muscle atrophy from simply prescribing physical activity to targeting the neurophysiological origins of muscle atrophy after traumatic joint injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785904PMC
http://dx.doi.org/10.1177/1941738120944256DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
32
traumatic joint
28
joint injury
28
muscle
12
atrophy traumatic
12
atrophy
10
injury
9
atrophy develops
8
disuse atrophy
8
muscle mass
8

Similar Publications

The scope of this study was to determine the diagnostic performance of ABSI for obesity and sarcopenic obesity, compared to the results of bioimpedance analysis (BIA) and BMI, by sex and age group. It involved a cross-sectional study with 12,793 participants in the second round of ELSA-Brasil (Longitudinal Study of Adult Health in Brazil), which obtained measurements of body fat percentage using BIA and anthropometry, verifying the performance of the diagnostic tests in order to compare the indices. The results showed that for obesity in men in all three age groups, the sensitivity was below 49%.

View Article and Find Full Text PDF

This study aims to examine the prevalence of abdominal obesity-dynapenia phenotype, identified by the presence of abdominal obesity and dynapenia, and understand its associated factors with a representative sample of the Brazilian population. Data were collected from the baseline of the Brazilian Longitudinal Study of Aging (ELSI-Brasil) 2015-2016. Abdominal obesity was determined by a waist-to-height ratio ≥ 0.

View Article and Find Full Text PDF

Late-Onset Krabbe Disease: Case Report of Two Patients in a Chinese Family and Literature Review.

Mol Genet Genomic Med

February 2025

Department of Orthopeadic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Krabbe disease (KD; globoid cell leucodystrophy) is a rare autosomal recessive lipid storage disorder that affects the white matter of the peripheral and central nervous. Late-onset KD is less frequently diagnosed and often presents with milder symptoms, making accurate diagnosis challenging, especially when distinguishing it from peripheral neuropathy. In this report, we present two cases of late-onset KD in a Chinese family.

View Article and Find Full Text PDF

Pediatric Sleep Quality and Parental Stress in Neuromuscular Disorders: Descriptive Analytical Study.

Asian Pac Isl Nurs J

January 2025

Nursing Care Research Center, Clinical Sciences Institute, Nursing Faculty, Baqiyatallah University of Medical Sciences, Vanak Square, Tehran, Iran, 98 9127297199.

Background: Neuromuscular disorders (NMDs) constitute a heterogeneous group of disorders that affect motor neurons, neuromuscular junctions, and muscle fibers, resulting in symptoms such as muscle weakness, fatigue, and reduced mobility. These conditions significantly affect patients' quality of life and impose a substantial burden on caregivers. Spinal muscular atrophy (SMA) is a relatively common NMD in children that presents in various types with varying degrees of severity.

View Article and Find Full Text PDF

Achieving myoblast engraftment into intact skeletal muscle via extracellular matrix.

Front Cell Dev Biol

January 2025

Department of Health Promotion Sciences, Graduated School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan.

Cell therapy of skeletal muscles is a promising approach for the prevention of muscular diseases and age-related muscle atrophy. However, cell transplantation to treat muscle atrophy that does not involve disease, such as sarcopenia, is considered impossible because externally injected cells rarely engraft into non-injured muscle tissue. Additionally, skeletal muscle-specific somatic stem cells, called satellite cells, lose their ability to adhere to tissue after being cultured and transforming into myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!