Achieving nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities using carbon materials remains challenging as carbon material tends to form random networks in nanocomposites. Here, highly anisotropic and flexible graphene@naphthalenesulfonate (NS)/poly(vinyl alcohol) (GN/PVA) nanocomposites were fabricated using a layer-by-layer scraping method with flat graphene as the starting functional filler. NS acted as a bond bridge for linking the graphene (π-π interaction) and PVA (hydrogen bond). The results showed well-dispersed graphene in the nanocomposites while maintaining flat morphology with uniform in-plane orientation. The as-fabricated nanocomposites exhibited highly anisotropic thermal and electrical conductivities. The in-plane and out-of-plane thermal conductivities of the nanocomposite prepared with 10.0 wt % graphene reached 13.8 and 0.6 W m K, and in-plane and out-of-plane electrical conductivities were 10 and 10 S cm, respectively. This indicated highly anisotropic thermal and electrical conductivities. Furthermore, the nanocomposites showed elevated flexibility and tensile strength from 42.0 MPa for pure PVA to 110.0 MPa for GN-5.0 wt %/PVA. In sum, the proposed strategy is effective for the preparation of nanocomposites with high flexibility, as well as superior anisotropic thermal and electrical conductivities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c04456 | DOI Listing |
Sci Rep
December 2024
School of Mechanical and Electrical Engineering, North University of China, Taiyuan, 030051, Shanxi, China.
Due to the sensitivity of the shaped charge jet to standoff and the complexity of its impact under lateral disturbances, this study aims to investigate the dynamic impact evolution of the jet influenced by standoff and lateral disturbances. A finite element model for the dynamic impact of shaped charge jets was established. Dynamic impact experiments were designed and conducted to validate the effectiveness of the numerical simulations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronics Engineering, SR University, Warangal, Telangana, 506371, India.
Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China.
The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.
View Article and Find Full Text PDFSci Rep
December 2024
Graduate School of Engineering, University of Hyogo, Himeji, 671-2280, Japan.
The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!