GPR68, an orphan G-protein coupled receptor, senses protons, couples to multiple G-proteins, and is also activated or inhibited by divalent metal ions. It has seven extracellular histidine residues, although it is not clear how these histidine residues play a role in both proton-sensing and metal ion modulation. Here we demonstrate that divalent metal ions are allosteric modulators that can activate or inhibit proton activity in a concentration- and pH-dependent manner. We then show that single histidine mutants have differential and varying degrees of effects on proton-sensing and metal ion modulation. Some histidine residues play dual roles in proton-sensing and metal ion modulation, while others are important in one or the other but not both. Two extracellular disulfide bonds are predicted to constrain histidine residues to be spatially close to each other. Combining histidine mutations leads to reduced proton activity and resistance to metal ion modulation, while breaking the less conserved disulfide bond results in a more severe reduction in proton-sensing over metal modulation. The small-molecule positive allosteric modulators (PAMs) ogerin and lorazepam are not affected by these mutations and remain active at mutants with severely reduced proton activity or are resistant to metal ion modulation. These results suggest GPR68 possesses two independent allosteric modulation systems, one through interaction with divalent metal ions at the extracellular surface and another through small-molecule PAMs in the transmembrane domains. A new GPR68 model is developed to accommodate the findings which could serve as a template for further studies and ligand discovery by virtual ligand docking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872588 | PMC |
http://dx.doi.org/10.1021/acs.biochem.0c00576 | DOI Listing |
J Chem Inf Model
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.
The near neutral p of histidine is commonly exploited to engineer pH-sensitive biomolecules. For example, histidine mutations introduced in the complementarity-determining region (CDR) of therapeutic antibodies can enhance selectivity for antigens in the acidic microenvironment of solid tumors or increase dissociation rates in the acidic early endosomes of cells. While solvent-exposed histidines typically have a p near 6.
View Article and Find Full Text PDFFEBS Lett
January 2025
Center for Computational and Integrative Biology, Rutgers University-Camden, NJ, USA.
Bioenergetic profiles of psychrophiles across domains of life are unusual in that intracellular ATP levels increase with declining temperature. Whole-transcriptome sequencing of the glacier ice worm Mesenchytraeus solifugus revealed a unique C-terminal extension on the ATP6 protein, which forms part of the proton pore of mitochondrial ATP synthase (Complex V). This extension, positioned near the proton exit pore, comprises alternating histidine residues thought to increase proton flux through Complex V leading to elevated ATP synthesis.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:
Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005, United States.
In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!