Spectroscopy techniques are being implemented within the biopharmaceutical industry due to their non-destructive ability to measure multiple analytes simultaneously, however, minimal work has been applied focussing on their application at small scale. Miniature bioreactor systems are being applied across the industry for cell line development as they offer a high-throughput solution for screening and process optimization. The application of small volume, high-throughput, automated analyses to miniature bioreactors has the potential to significantly augment the type and quality of data from these systems and enhance alignment with large-scale bioreactors. Here, we present an evaluation of 1. a prototype that fully integrates spectroscopy to a miniature bioreactor system (ambr®15, Sartorius Stedim Biotech) enabling automated Raman spectra acquisition, 2. In 50 L single-use bioreactor bag (SUB) prototype with an integrated spectral window. OPLS models were developed demonstrating good accuracy for multiple analytes at both scales. Furthermore, the 50 L SUB prototype enabled on-line monitoring without the need for sterilization of the probe prior to use and minimal light interference was observed. We also demonstrate the ability to build robust models due to induced changes that are hard and costly to perform at large scale and the potential of transferring these models across the scales. The implementation of this technology enables integration of spectroscopy at the small scale for better process understanding and generation of robust models over a large design space while facilitating model transfer throughout the scales enabling continuity throughout process development and utilization and transfer of ever-increasing data generation from development to manufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.3074 | DOI Listing |
Lab Chip
January 2025
Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.
The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies.
View Article and Find Full Text PDFSensors (Basel)
November 2024
CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy.
Lab Chip
December 2024
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
In recent years, monoclonal antibodies (mAbs) have become a powerful tool in the treatment of human diseases. Currently, over 100 mAbs have received approval for therapeutic use in the US, with wide-ranging applications from cancer to infectious diseases. The predominant method of producing antibodies for therapeutics involves expression in mammalian cell lines.
View Article and Find Full Text PDFCell Rep Methods
November 2024
Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands. Electronic address:
Conventional static culture of organoids necessitates weekly manual passaging and results in nonhomogeneous exposure of organoids to nutrients, oxygen, and toxic metabolites. Here, we developed a miniaturized spinning bioreactor, RPMotion, specifically optimized for accelerated and cost-effective culture of epithelial organoids under homogeneous conditions. We established tissue-specific RPMotion settings and standard operating protocols for the expansion of human epithelial organoids derived from the liver, intestine, and pancreas.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2024
National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy.
Long-term culture of primary lymphocytes and hematopoietic stem and progenitor cells (HSPCs) is pivotal to their expansion and study. Furthermore, genetic engineering of the above-mentioned primary human cells has several safety needs, including the requirement of efficient assays for unwanted tumorigenic events. In this work, we tested and optimized the Miniaturized Optically Accessible Bioreactor (MOAB) platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!