Gapmers are antisense oligonucleotides composed of a central DNA segment flanked by nucleotides of modified chemistry. Hybridizing with transcripts by sequence complementarity, gapmers recruit ribonuclease H and induce target RNA degradation. Since its concept first emerged in the 1980s, much work has gone into developing gapmers for use in basic research and therapy. These include improvements in gapmer chemistry, delivery, and therapeutic safety. Gapmers have also successfully entered clinical trials for various genetic disorders, with two already approved by the U.S. Food and Drug Administration for the treatment of familial hypercholesterolemia and transthyretin amyloidosis-associated polyneuropathy. Here, we review the events surrounding the early development of gapmers, from conception to their maturity, and briefly conclude with perspectives on their use in therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0771-8_1 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Nucleic acid medicine encompassing antisense oligonucleotides (ASOs) has garnered interest as a potential avenue for next-generation therapeutics. However, their therapeutic application has been constrained by challenges such as instability, off-target effects, delivery issues, and immunogenic responses. Furthermore, their practical utility in treating kidney diseases remains unrealized.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany.
The use of single-guide RNA (sgRNA) for gene editing using the CRISPR Cas9 system has become a powerful technique in various fields, especially with the growing interest in such molecules as therapeutic options in the last years. An important parameter for the use of these molecules is the verification of the correct sgRNA oligonucleotide sequence. Apart from next-generation sequencing protocols, mass spectrometry (MS) has been proven as a powerful technique for this purpose.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA.
Antisense oligonucleotides (ASOs) are an important class of therapeutics to treat genetic diseases, and expansion of this modality to neurodegenerative disorders has been an active area of research. To realize chronic administration of ASO therapeutics to treat neurodegenerative diseases, new chemical modifications that improve activity and safety profiles are still needed. Furthermore, it is highly desirable to develop a single stereopure ASO with a defined activity and safety profile to avoid any efficacy and safety concerns due to the batch-to-batch variation in the composition of diastereomers.
View Article and Find Full Text PDFSci Rep
January 2025
Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, 569-1094, Osaka, Japan.
Recent advances in the clinical development of oligonucleotide therapeutics, such as antisense oligonucleotides (ASOs) and small interfering RNAs, have attracted attention as promising therapeutic modalities for genetic and intractable diseases. These oligonucleotide therapeutics exert their efficacy by binding to target RNAs present within cells; however, the mechanisms underlying their cellular uptake, especially their passage through membranes, remain largely unclear. In the nematode, Caenorhabditis elegans, the multi-pass transmembrane protein, SID-1, is involved in the cellular uptake of double-stranded RNAs.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, 38206, Spain.
Introduction: Osteoporosis is a metabolic disorder characterized by the loss of bone mass and density. Nucleic acid-based therapies are among the most innovative approaches for osteoporosis management, although their effective delivery to bone tissue remains a challenge. In this work, SFRP1-silencing GampeR loaded-nanoparticles were prepared and functionalized with specific moieties to improve bone targeting and, consequently, therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!