All-optical methods of probing in vivo brain function are advantageous for their compatibility with automated microscopy and fast spatial targeting of neural circuit excitation and response. Recent advances in optogenetic technologies allow simultaneous light activation of specific neurons and optical readout of neural activity via fluorescent calcium reporters, providing an attractive opportunity for high-throughput screening assays that directly assess dynamic neural function in vivo. Here we describe a method to automatically record optogenetically activated neural responses in living, hydrogel-embedded organisms over many hours in a multiwell plate format. This method is suitable for screening the neural effects of hundreds of chemical compounds and assessing the time course of bioactivity over 12 h or more. As examples, we show the suppression of neural responses over time with various concentrations of two voltage-gated calcium channel blockers and a full-plate screen of 320 chemicals with positive and negative controls in a single experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0830-2_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!