Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work covers soymilk fermentation by starter and probiotic cultures and explores the influence of cooling protocol on cell viability, organic acid production, sugar consumption, fatty acid profile, and cell survival to in vitro gastrointestinal stress. After fermentation at 37 °C by mono- or co-cultures of Streptococcus thermophilus (St), Lactobacillus bulgaricus (Lb), and Lactobacillus paracasei (Lp), fermented soymilk was cooled directly at 4 °C for 28 days or cooled in two phases (TPC), i.e., by preceding that step by another at 25 °C for 8 h. Soybean milk fermentation by Lb alone lasted longer (15 h) than by StLb or StLbLp (9 h). In ternary culture, TPC increased Lp viability, linoleic, and lactic acid concentrations by 3.8, 22.6, and 96.2%, respectively, whereas the cooling protocol did not influence Lp and St counts after in vitro gastrointestinal stress. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688817 | PMC |
http://dx.doi.org/10.1007/s42770-020-00369-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!