The Pathology of Severe COVID-19-Related Lung Damage.

Dtsch Arztebl Int

Institute of Pathology, University Hospital Heidelberg; Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University Hospital Heidelberg; Department of Gastroenterology and Hepatology, University Hospital Heidelberg; Institute of Pathology, Hannover Medical School; Biomedical Research in Endstage and Obstructive Lung Dis ease Hannover (BREATH), Center for Lung Research (DZL), Hannover Medical School; TI Biobank; German Center for Infection Research (DZIF), - University Hospital Heidelberg.

Published: July 2020

Background: The histomorphological changes of lung damage in severe coronavirus disease 2019 (COVID-19) have not yet been adequately characterized. In this article, we describe the sequence of pathological changes in COVID-19 and discuss the implications for approaches to treatment.

Methods: Standardized autopsies were performed on thirteen patients who had died of COVID-19. The findings were analyzed together with clinical data from the patients' medical records.

Results: Most (77%) of the deceased patients were men. Their median age at death was 78 years (range, 41-90). Most of them had major pre-existing chronic diseases, most commonly arterial hypertension. The autopsies revealed characteristic COVID-19-induced pathological changes in the lungs, which were regarded as the cause of death in most patients. The main histological finding was sequential alveolar damage, apparently due in large measure to focal capillary microthrombus formation. Alveolar damage leads to the death of the patient either directly or by the induction of pulmonary parenchymal fibrosis. Diffuse lung damage was seen exclusively in invasively ventilated patients.

Conclusion: Autopsies are crucial for the systematic assessment of new diseases such as COVID-19: they provide a basis for further investigations of disease mechanisms and for the devising of potentially effective modes of treatment. The autopsy findings suggest that focal damage of the microvascular pulmonary circulation is a main mechanism of lethal lung disease due to the SARS-CoV-2 virus. It may also be a cause of persistent lung damage in patients who recover from severe COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588618PMC
http://dx.doi.org/10.3238/arztebl.2020.0500DOI Listing

Publication Analysis

Top Keywords

lung damage
16
pathological changes
8
alveolar damage
8
damage
7
lung
5
covid-19
5
pathology severe
4
severe covid-19-related
4
covid-19-related lung
4
damage background
4

Similar Publications

Fluoride Induces Toxic Effects on the A549 Pulmonary Cell Line at Non-cytotoxic Concentrations.

Biol Trace Elem Res

January 2025

Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, AvInstituto Politécnico Nacional 2508, Col San Pedro ZacatencoCDMX, C.P. 07360, Mexico City, Mexico.

Fluoride is emitted into the air not only through gas emissions but also from volcanic ash, leading to contact via inhalation. Therefore, the objective of the present study was to evaluate the cellular and biochemical responses in the A549 cell line after exposure to NaF (sodium fluoride) concentrations lower than those previously used in other studies to determine the impact on the lung epithelium. A549 cells were exposed to different concentrations (0.

View Article and Find Full Text PDF

Beta papillomaviruses: From foe to friend in skin cancer immunity.

Cancer Cell

December 2024

Pre-Cancer Immunology Laboratory, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence. Electronic address:

In this issue of Cancer Cell, Son et al. highlight an unexpected role for skin β-papillomaviruses in the protection against skin carcinogenesis. T cell immunity to skin papillomaviruses blocks the expansion of p53 mutant clones in ultraviolet (UV) radiation-damaged skin, preventing the development of skin cancer.

View Article and Find Full Text PDF

Low-dose radiation ameliorates PM2.5-induced lung injury through non-canonical TLR1/TLR2-like receptor pathways modulated by Akkermansia muciniphila.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:

Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.

View Article and Find Full Text PDF

Dual efficacy of tocilizumab in managing PD-1 inhibitors-induced myocardial inflammatory injury and suppressing tumor growth with PD-1 inhibitors: a preclinical study.

Cancer Immunol Immunother

January 2025

Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The combined use of tocilizumab (TCZ) and immune checkpoint inhibitors (ICIs) in cancer treatment is gaining attention, but preclinical studies are lacking. Our study aims to investigate the synergistic anti-tumor effect of TCZ combined with ICIs and its role in treating immune-related adverse events (irAEs). The clinical significance of high interleukin-6 (IL-6) expression in tumor patients was analyzed from the Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Inhalation Exposure to Airborne Prothioconazole Caused by Unmanned Aerial Vehicles Application and Potential Lung Health Effects.

J Agric Food Chem

January 2025

Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.

The use of unmanned aerial vehicle (UAV) has greatly improved pesticide effectiveness and control efficiency; however, the risk of inhalation exposure to pesticides caused by spray drift requires urgent attention. This study is the first to investigate residue distribution and inhalation exposure risk of airborne prothioconazole and its metabolite prothioconazole-desthio during UAV application. The maximum detected unit exposure of prothioconazole and prothioconazole-desthio in airborne particulate matter was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!