Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: Small-conductance Ca -activated potassium (SK) channels are activated exclusively by increases in intracellular Ca that binds to calmodulin constitutively associated with the channel. Wild-type SK2 channels are activated by Ca with an EC value of ~0.3 μmol/L. Here, we investigate hydrophobic interactions between the HA helix and the S4-S5 linker as a major determinant of channel apparent Ca sensitivity.
Methods: Site-directed mutagenesis, electrophysiological recordings and molecular dynamic (MD) simulations were utilized.
Results: Mutations that decrease hydrophobicity at the HA-S4-S5 interface lead to Ca hyposensitivity of SK2 channels. Mutations that increase hydrophobicity result in hypersensitivity to Ca . The Ca hypersensitivity of the V407F mutant relies on the interaction of the cognate phenylalanine with the S4-S5 linker in the SK2 channel. Replacing the S4-S5 linker of the SK2 channel with the S4-S5 linker of the SK4 channel results in loss of the hypersensitivity caused by V407F. This difference between the S4-S5 linkers of SK2 and SK4 channels can be partially attributed to I295 equivalent to a valine in the SK4 channel. A N293A mutation in the S4-S5 linker also increases hydrophobicity at the HA-S4-S5 interface and elevates the channel apparent Ca sensitivity. The double N293A/V407F mutations generate a highly Ca sensitive channel, with an EC of 0.02 μmol/L. The MD simulations of this double-mutant channel revealed a larger channel cytoplasmic gate.
Conclusion: The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca sensitivity of SK2 channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736289 | PMC |
http://dx.doi.org/10.1111/apha.13552 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!