Parkinson's disease motor dysfunctions are associated with improperly organised neural oscillatory activity. The presence of such disruption at the early stages of the disease in which altered sleep is one of the main features could be a relevant predictive feature. Based on this, we aimed to investigate the neocortical synchronisation dynamics during slow-wave sleep (SWS) in the rotenone model of Parkinson's disease. After rotenone administration within the substantia nigra pars compacta, one group of male Wistar rats underwent sleep-wake recording. Considering the association between SWS oscillatory activity and memory consolidation, another group of rats underwent a memory test. The fine temporal structure of synchronisation dynamics was evaluated by a recently developed technique called first return map. We observed that rotenone administration decreased the time spent in SWS and altered the power spectrum within different frequency bands, whilst it increased the transition rate from a synchronised to desynchronised state. This neurotoxin also increased the probability of longer and decreased the probability of shorter desynchronisation events. At the same time, we observed impairment in object recognition memory. These findings depict an electrophysiological fingerprint represented by a disruption in the typical oscillatory activity within the neocortex at the early stages of Parkinson's disease, concomitant with a decrease in the time spent in SWS and impairment in recognition memory.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.13170DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
oscillatory activity
12
neocortical synchronisation
8
slow-wave sleep
8
rotenone model
8
model parkinson's
8
early stages
8
synchronisation dynamics
8
rotenone administration
8
rats underwent
8

Similar Publications

Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive disorder that affects the nervous system and causes regions of the brain to deteriorate. In this study, we investigated the effects of MR-guided focused ultrasound (MRgFUS) for the delivery of human mesenchymal stem cells (MSCs) on the 6-hydroxydopamine (6-HODA)-induced PD rat model. MRgFUS-induced blood-brain barrier (BBB) permeability modulation was conducted using an acoustic controller with the targets at the striatum (ST) and SN.

View Article and Find Full Text PDF

Environmental Mycotoxins: A Potential Etiological Factor for Neurodegenerative Diseases?

Toxicology

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Mycotoxins are potential environmental risk factors for neurodegenerative diseases. These toxins penetrate the central nervous system via a compromised blood-brain barrier, which may cause oxidative stress and neuroinflammation, these can also contribute to amyloid-beta (Aβ) plaque accumulation, Tau protein hyperphosphorylation, and neurofibrillary tangle formation. Mycotoxins also activate microglia, cause neuronal apoptosis, and disrupt central nervous system function.

View Article and Find Full Text PDF

Background:  The movement disorder known as hemifacial spasm is characterized by involuntary contractions of the muscles that are innervated by the facial nerve. The treatment of choice for this condition is botulinum toxin injections.

Objective:  To analyze the botulinum toxin dosage in patients undergoing treatment for hemifacial spasm during a 14-year period.

View Article and Find Full Text PDF

Smart Polymeric 3D Microscaffolds Hosting Spheroids for Neuronal Research via Quantum Metrology.

Adv Healthc Mater

January 2025

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.

Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!