Background We previously reported that osteopontin plays an essential role in accelerating both reparative fibrosis and clearance of dead cells (efferocytosis) during tissue repair after myocardial infarction (MI) and galectin-3CD206 macrophages is the main source of osteopontin in post-MI heart. Interleukin-10- STAT3 (signal transducer and activator of transcription 3)-galectin-3 axis is essential for (encoding osteopontin) transcriptional activation in cardiac macrophages after MI. Here, we investigated the more detailed mechanism responsible for functional maturation of osteopontin-producing macrophages. Methods and Results In post-MI hearts, transcriptional activation occurred almost exclusively in MerTK (Mer tyrosine kinase) galectin-3 macrophages. The induction of MerTK on galectin-3 macrophages is essential for their functional maturation including efferocytosis and transcriptional activity. MerTKgalectin-3 macrophages showed a strong activation of both STAT3 and ERK (extracellular signal-regulated kinase). STAT3 inhibition suppressed the differentiation of osteopontin-producing MerTKgalectin-3 macrophages, however, STAT3 activation was insufficient at inducing transcriptional activity. ERK inhibition suppressed transcriptional activation without affecting MerTK or galectin-3 expression. Concomitant activation of ERK is required for transcriptional activation of . In knockout enhanced green fluorescent protein- knock-in mice subjected to MI, osteopontin-producing macrophages decreased but did not disappear entirely. Interleukin-10 and macrophage colony-stimulating factor synergistically activated STAT3 and ERK and promoted the differentiation of osteopontin-producing MerTKgalectin-3 macrophages in bone marrow-derived macrophages. Coadministration of anti-interleukin-10 plus anti-macrophage colony-stimulating factor antibodies substantially reduced the number of osteopontin-producing macrophages by more than anti-interleukin-10 antibody alone in post-MI hearts. Conclusions Interleukin-10 and macrophage colony-stimulating factor act synergistically to activate STAT3 and ERK in cardiac macrophages, which in turn upregulate the expression of galectin-3 and MerTK, leading to the functional maturation of osteopontin-producing macrophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726992 | PMC |
http://dx.doi.org/10.1161/JAHA.120.017071 | DOI Listing |
Front Immunol
January 2025
Section of Immunology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Background: Maintenance immunosuppression is required for suppression of alloimmunity or allograft rejection. However, continuous use of immunosuppressants may lead to various side effects, necessitating the use of alternative immunosuppressive drugs. The early secreted antigenic target of 6 kDa (ESAT-6) is a virulence factor and immunoregulatory protein of mycobacterium tuberculosis (Mtb), which alters host immunity through dually regulating development or activation of various immune cells.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.
View Article and Find Full Text PDFFront Plant Sci
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China.
Sugar, the primary product of photosynthesis, is a vital requirement for cell activities. Allocation of sugar from source to sink tissues is facilitated by sugar transporters (ST). These STs belong to the Major Facilitator Superfamily (MFS), the largest family of STs in plants.
View Article and Find Full Text PDFBioact Mater
April 2025
Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
The mammalian brain has an extremely limited ability to regenerate lost neurons and to recover function following ischemic stroke. A biomaterial strategy of slowly-releasing various regeneration-promoting factors to activate endogenous neurogenesis represents a safe and practical neuronal replacement therapy. In this study, basic fibroblast growth factor (bFGF)-Chitosan gel is injected into the stroke cavity.
View Article and Find Full Text PDFImmunohorizons
January 2025
Section of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado, Aurora, CO, United States.
Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!