Introduction: The medical use of three-dimensional (3-D) images has been a topic in the literature since 1988, but 95% of papers on 3-D printing were published in the last six years. The increase in publications is the result of advances in 3-D printing methods, as well as of the increasing availability of these machines in different hospitals. This paper sought to review the literature on 3-D printing and to discuss thoughtful ideas regarding benefits and challenges to its incorporation into cardiothoracic surgeons' routines.
Methods: A comprehensive and systematic search of the literature was performed in PubMed and included material published as of March 2020.
Results: Using this search strategy, 9,253 publications on 3-D printing and 497 on "heart" 3-D printing were retrieved.
Conclusion: 3-D printed models are already helping surgeons to plan their surgeries, helping patients and their families to understand complex anatomy, helping fellows and residents to practice surgery, even for rare cases, and helping nurses and other health care staff to better understand some conditions, such as heart diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454638 | PMC |
http://dx.doi.org/10.21470/1678-9741-2019-0475 | DOI Listing |
PLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFAnesth Analg
February 2025
From the Department of Surgical Specialties and Anesthesiology of São Paulo State University (UNESP), Medical School, Botucatu, Brazil.
Background: Proficiency in endotracheal intubation (ETI) is essential for medical professionals and its training should start at medical schools; however, large caseload may be required before achieving an acceptable success rate with direct laryngoscopy. Video laryngoscopy has proven to be an easier alternative for intubation with a faster learning curve, but its availability in medical training may be an issue due to its high market prices. We devised a low-cost 3-dimensionally printed video laryngoscope (3DVL) and performed a randomized trial to evaluate if the intubation success rate on the first attempt with this device is noninferior to a standard commercially available video laryngoscope (STVL).
View Article and Find Full Text PDF3D Print Med
January 2025
Department of Surgical & Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Background: Penile implant surgery is the standard surgical treatment for end-stage erectile dysfunction. However, the growing complexity of modern high-tech penile prostheses has increased the demand for more practical training opportunities. The most advanced contemporary training methods involve simulation training using cadavers, with costs exceeding $5,000 per cadaver, inclusive of biohazard fees.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Coastal Ear, Nose & Throat LLC, Neptune, NJ, USA.
Objective: This systematic review and meta-analysis compares the efficacy and complication rate of absorbable versus non-absorbable 3D-printed, patient-customized, maxillofacial implants in facial trauma patients.
Data Sources: A comprehensive search of four databases (PubMed, Scopus, Web of Science, and Cochrane) was conducted.
Methods: A systematic review and single-proportion meta-analysis was conducted employing PRISMA guidelines.
J Orthop Case Rep
January 2025
Department of Orthopaedic Oncology, Aarhus University Hospital, Aarhus N, Denmark.
Introduction: In recent years, numerous hospitals have established in-house three-dimensional (3D) printing centers, enabling health-care facilities to leverage the transformative capabilities of additive manufacturing technology on their premises. With this emerging opportunity arises a necessity to undertake a thorough assessment of the manufactured tools employed in clinical practice. The objectives of this article are to describe the pathway of in-house printing and evaluate the accuracy of 3D-printed specific instruments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!