AI Article Synopsis

  • - Two unique compounds, EBC-232 and EBC-323, were extracted from the Australian rainforest plant Croton insularis and are difficult to analyze.
  • - These compounds are diastereomers featuring a distinctive ring structure that combines an oxo-6,7-spiro ring system with a dihydrofuran.
  • - The structure determination involved integrating five advanced computational NMR techniques, which also demonstrate the potential for AI to improve future structural analysis challenges.

Article Abstract

Structurally unique halimanes EBC-232 and EBC-323, isolated from the Australian rainforest plant Croton insularis, proved considerably difficult to elucidate. The two diastereomers, which consist an unusual oxo-6,7-spiro ring system fused to a dihydrofuran, were solved by unification and consultation of five in silico NMR elucidation and prediction methods [i.e., ACDLabs, olefin strain energy (OSE), DP4, DU8+ and TD DFT CD]. Structure elucidation challenges of this nature are prime test case examples for empowering future AI learning in structure elucidation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202001884DOI Listing

Publication Analysis

Top Keywords

structure elucidation
8
ebc-232 323
4
323 structural
4
structural conundrum
4
conundrum necessitating
4
necessitating unification
4
unification silico
4
silico prediction
4
elucidation
4
prediction elucidation
4

Similar Publications

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Molecular basis for the stepwise and faithful maturation of the 20 proteasome.

Sci Adv

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.

The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.

View Article and Find Full Text PDF

From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.

A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.

View Article and Find Full Text PDF

Structural basis of Epstein-Barr virus gp350 receptor recognition and neutralization.

Cell Rep

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China. Electronic address:

Epstein-Barr virus (EBV) is an oncogenic virus associated with multiple lymphoid malignancies and autoimmune diseases. During infection in B cells, EBV uses its major glycoprotein gp350 to recognize the host receptor CR2, initiating viral attachment, a process that has lacked direct structural evidence for decades. In this study, we resolved the structure of the gp350-CR2 complex, elucidated their key interactions, and determined the site-specific N-glycosylation map of gp350.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!