The use of engineered nanomaterials (ENMs) in foods and consumer products is rising, increasing the potential for unintentional ingestion. While the cytotoxicity of many ENMs has been investigated, less attention has been given to adverse impact on the intestinal barrier integrity. Chronical disruption of gastrointestinal integrity can have far reaching health implications. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity were investigated for 20 metal, metal oxide, and metal sulfide ENMs. Caco-2 cells were exposed to 50 μg/mL ENMs for 24 hours. ENM formulations were characterized at 0 and 24 hours, and Sedimentation, Diffusion and Dosimetry Modeling was applied to calculate the effective dose of exposure during 24 hours. The apparent permeability coefficient (P) was determined for fluorescent labeled dextran (3,000 Da) and tight junction integrity was evaluated by immunofluorescence microscopy. Cytotoxicity was investigated by determining lactate dehydrogenase release (LDH) and cell metabolic activity (tetrazolium based MTS) assays. Four ENMs led to significantly increased P, (15.8% w/w% Ag-SiO nanoparticle (NP), 60 nm CdS NP, 100 nm VO flakes, and 50 nm ZnO NP), while one ENM (20 nm MgO NP) decreased P. With the exception of CdS NP, significantly increased P was not connected with cell cytotoxicity. The calculated effective dose concentration was not correlated with increased P. Our results illustrate that while many metal, metal oxide, and metal sulfide ENMs do not adversely affect monolayer integrity or induce cytotoxicity in differentiated Caco-2 cells, a subset of ENMs may compromise the intestinal integrity. This study demonstrated the use of differentiated Caco-2 monolayer and P as an endpoint to identify and prioritize ENMs that should be investigated further. The interaction between ENMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7451203 | PMC |
http://dx.doi.org/10.1016/j.impact.2020.100212 | DOI Listing |
Food Res Int
January 2025
Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy.
The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids.
View Article and Find Full Text PDFThe diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well- known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode indicated a beneficial role of Ent in promoting mitochondrial iron level in the animal intestine.
View Article and Find Full Text PDFThe diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well-known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode C.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States of America. Electronic address:
The static Caco-2 monolayer is an extensively utilized model for predicting the permeability of small molecules during the drug development process. While these cells can differentiate and develop key functional and morphological features that emulate human enterocytes, they do not fully replicate the complexity of human intestinal physiology. In this study, we investigated functional and morphological aspects of Caco-2 cells, alongside their transcriptomic profiles, with a particular emphasis on genes encoding drug-metabolizing enzymes and drug transporters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!