We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the and orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between  = 0 and  = ±1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton-polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438334PMC
http://dx.doi.org/10.1038/s41377-020-00377-6DOI Listing

Publication Analysis

Top Keywords

landau levels
16
edge states
12
helical edge
8
synthetic magnetic
8
landau
5
direct observation
4
observation photonic
4
photonic landau
4
levels
4
levels helical
4

Similar Publications

The advent of in-memory computing has introduced a new paradigm of computation, which offers significant improvements in terms of latency and power consumption for emerging embedded AI accelerators. Nevertheless, the effect of the hardware variations and non-idealities of the emerging memory technologies may significantly compromise the accuracy of inferred neural networks and result in malfunctions in safety-critical applications. This article addresses the issue from three different perspectives.

View Article and Find Full Text PDF

Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.

View Article and Find Full Text PDF

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

On-Chip Elastic Wave Manipulations Based on Synthetic Dimension.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

Article Synopsis
  • Researchers are focusing on manipulating elastic waves in lower-dimensional mechanical metamaterials to design miniaturized elastic devices, but controlling these waves in higher dimensions is challenging.
  • This study introduces a structural parameter to explore on-chip Weyl physics in a silicon-on-insulator system, creating an in-plane pseudomagnetic field that facilitates robust energy transport through chiral Landau levels.
  • Unique boundary states are observed near the corners, differing from traditional topological states, and the use of synthetic dimensions allows for advanced multidimensional elastic wave manipulation and exploration of higher-dimensional physics on integrated platforms.
View Article and Find Full Text PDF

Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!