In comparison to other techniques, high resolution ultrasound has proved to be a good method for clinical imaging of muscles. By free selection of the scan plane and multidimensional viewing it is possible to represent each muscle from origin to insertion and to observe them during function. Pathology produces different types of echogenity. By imaging an EMG needle electrode the exact position within the muscle can be demonstrated. The result of the EMG study can therefore be related to small individual muscles or muscle segments, which are below the size suitable for clinical examination.
Download full-text PDF |
Source |
---|
J Biol Eng
January 2025
AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany.
Background: Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
The Sustainable Development Goals (SDGs) provide a comprehensive framework for societal progress and planetary health. However, it remains unclear whether universal patterns exist in how nations pursue these goals and whether key development areas are being overlooked. Here, we apply the product space methodology, widely used in development economics, to construct an 'SDG space of nations'.
View Article and Find Full Text PDFNat Comput Sci
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
How complex phenotypes emerge from intricate gene expression patterns is a fundamental question in biology. Integrating high-content genotyping approaches such as single-cell RNA sequencing and advanced learning methods such as language models offers an opportunity for dissecting this complex relationship. Here we present a computational integrated genetics framework designed to analyze and interpret the high-dimensional landscape of genotypes and their associated phenotypes simultaneously.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
Objectives: Chest wall infiltration in primary lung cancer affects the surgical and therapeutic strategies. This study evaluates the efficacy of the chest wall vessel involvement in subpleural lung cancer (CWVI) on ultra-high-resolution CT (UHR-CT) for detecting chest wall invasion.
Materials And Methods: A retrospective analysis of lung cancer cases with confirmed pleural and chest wall invasion was conducted from November 2019 to April 2022.
Sci Rep
January 2025
Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.
Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!