The detrimental effect of natural aging on mechanical properties of zinc alloys restricts their application as bioresorbable medical implants. In this study, aging of Zn-0.05Mg alloy and the effect of 0.5 Cu and 0.1 Mn (in weight percent) addition on the microstructure and tensile properties were studied. The alloys were cold rolled, aged and annealed; aiming to investigate the effects of precipitates and grain size on the mechanical properties and their stability. TEM analysis revealed that in ultrafine-grained binary Zn-0.05Mg alloy, the natural aging occurred due to the formation of nano-sized MgZn precipitates. After 90 days of natural aging, the yield strength and ultimate tensile strength of Zn-0.05Mg alloy increased from 197±4 MPa and 227±5 MPa to 233±8 MPa and 305±7 MPa, respectively, while the elongation was drastically reduced from 34±3% to 3±1%. This natural aging was retarded by adding the third element at either 0.1Mn or 0.5Cu quantities, which interacted with Mg in Zn solid solution and impeded the formation of MgZn precipitates. The addition of Cu and Mn elements increased alloy's strength, ductility, and its mechanical stability at a room temperature. The measured tensile strength and elongation were 274±5 MPa and 41±1% for Zn-0.1Mn-0.05Mg and 312±2 MPa and 44±2% for Zn-0.5Cu-0.05Mg, respectively. Annealing the alloys at elevated temperatures caused increase in both grain size and dissolution of secondary phases, and both affected alloy deformation mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450801PMC
http://dx.doi.org/10.1016/j.msea.2019.138529DOI Listing

Publication Analysis

Top Keywords

zn-005mg alloy
16
natural aging
16
mechanical properties
8
grain size
8
mgzn precipitates
8
tensile strength
8
mpa
6
alloy
5
aging
5
effects alloying
4

Similar Publications

Novel high-strength, low-alloys Zn-Mg (<0.1wt% Mg) and their arterial biodegradation.

Mater Sci Eng C Mater Biol Appl

March 2018

Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA. Electronic address:

It is still an open challenge to find a biodegradable metallic material exhibiting sufficient mechanical properties and degradation behavior to serve as an arterial stent. In this study, Zn-Mg alloys of 0.002 (Zn-002Mg), 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!