Paramagnetic constituents of a cell have strong effect on cell's volume magnetic susceptibility even at low volume fraction because of their high susceptibility relative to that of the diamagnetic cell constituents. The effect can be measured at a single cell level by measuring cell terminal velocity in viscous media using a microscope equipped with a well-defined field and gradient magnet configuration (referred to as magnetophoretic analysis by cell tracking velocimetry, CTV). The sensitivity of such a microscopic-scale magnetometry was compared to that of a reference method of superconducting quantum interference-magnetic properties measurement system (SQUID-MPMS) using a red blood cell (RBC) suspension model. The RBC hemoglobin oxygen saturation determines the hemoglobin molecular magnetic susceptibility (diamagnetic when fully oxygenated, paramagnetic when fully deoxygenated or converted to methemoglobin). The SQUID-MPMS measurements were performed on an average of 5,000 RBCs in 20 μL physiological phosphate buffer at room temperature, those by CTV on a single cell track in a mean magnetic field of 1.6 T and mean gradient of 240 T/m, repeated for an average of 1,000 tracks per sample. This suggests 5,000× higher sensitivity of cell susceptometry by magnetophoretic analysis than by SQUID-MPMS. The magnetophoretic mean RBC magnetic susceptibilities were in the range determined by SQUID-MPMS (lower limit) and theory (upper limit). The ability of magnetophoretic analysis to resolve susceptibility peaks in a mixed cell populations was confirmed for an oxy RBC and met RBC mixture. Magnetophoretic analysis by CTV provides new tool for studies of emergence of paramagnetic reaction products in the cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453790 | PMC |
http://dx.doi.org/10.1016/j.jmmm.2018.10.108 | DOI Listing |
Biosens Bioelectron
March 2025
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, CO, USA, 80523; Department of Chemical and Biological Engineering, Colorado State University, CO, USA, 80523. Electronic address:
The COVID-19 pandemic highlighted the need for rapid and sensitive diagnostic tools. In this work, the Magnetophoretic Slider Assay (MeSA) was integrated with electrochemical detection (eMeSA) using screen-printed carbon electrodes for the first time for the detection of SARS-CoV-2 nucleocapsid protein (NP). A sandwich enzyme-linked immunosorbent assay (ELISA) was performed on streptavidin-labeled magnetic beads (MBs).
View Article and Find Full Text PDFSmall Methods
December 2024
Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA.
Efficient isolation and patterning of biomolecules is a vital step within sample preparation for biomolecular analysis, with numerous diagnostic and therapeutic applications. For exosomes, nanoscale lipid-bound biomolecules, efficient isolation is challenging due to their minute size and resultant behavior within biofluids. This study presents a method for the rapid isolation and patterning of magnetically tagged exosomes via rationally designed micromagnets.
View Article and Find Full Text PDFACS Appl Bio Mater
June 2024
Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
Magnetic separation is a promising alternative to chromatography for enhancing the downstream processing (DSP) of monoclonal antibodies (mAbs). However, there is a lack of efficient magnetic particles for successful application. Aiming to fill this gap, we demonstrate the suitability of bare iron oxide nanoparticles (BION) with physical site-directed immobilization of an engineered Protein A affinity ligand (rSpA) as an innovative magnetic material.
View Article and Find Full Text PDFSoft Matter
March 2024
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
We report a numerical investigation of the magnetophoresis of solutions containing paramagnetic metal ions. Using a simulated magnetic field of a superconducting magnet and the convection-diffusion model, we study the transport of transition metal salts through a porous medium domain. In particular, through a detailed comparison of the numerical results of magnetophoretic velocity and ion concentration profiles with prior published experiments, we validate the model.
View Article and Find Full Text PDFElectrophoresis
March 2024
School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia.
The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!