Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A primary cause of simulator sickness in head-mounted displays (HMDs) is conflict between the visual scene displayed to the user and the visual scene expected by the brain when the user's head is in motion. It is useful to measure perceptual sensitivity to visual speed modulation in HMDs because conditions that minimize this sensitivity may prove less likely to elicit simulator sickness. In prior research, we measured sensitivity to visual gain modulation during slow, passive, full-body yaw rotations and observed that sensitivity was reduced when subjects fixated a head-fixed target compared with when they fixated a scene-fixed target. In the current study, we investigated whether this pattern of results persists when (1) movements are faster, active head turns, and (2) visual stimuli are presented on an HMD rather than on a monitor. Subjects wore an Oculus Rift CV1 HMD and viewed a 3D scene of white points on a black background. On each trial, subjects moved their head from a central position to face a 15° eccentric target. During the head movement they fixated a point that was either head-fixed or scene-fixed, depending on condition. They then reported if the visual scene motion was too fast or too slow. Visual speed on subsequent trials was modulated according to a staircase procedure to find the speed increment that was just noticeable. Sensitivity to speed modulation during active head movement was reduced during head-fixed fixation, similar to what we observed during passive whole-body rotation. We conclude that fixation of a head-fixed target is an effective way to reduce sensitivity to visual speed modulation in HMDs, and may also be an effective strategy to reduce susceptibility to simulator sickness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454227 | PMC |
http://dx.doi.org/10.1016/j.displa.2018.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!