AI Article Synopsis

  • The study used ELISA to track the development of autoantibodies against insulin and retroviral antigens in different strains of mice, particularly focusing on those prone to autoimmune diabetes (NOD mice) and their diabetes-resistant counterparts.
  • NOD mice exhibited significantly higher levels of autoantibodies compared to NON mice, with specific antibodies emerging before or during the onset of hyperglycemia, while delayed insulin autoantibody development distinguished non-diabetic NOD mice.
  • In C57BL/KsJ db/db mice, high autoantibody levels were linked to beta-cell necrosis and early hyperglycemia, but elevated autoantibody titers alone did not cause diabetes, showing that other factors are involved in the disease progression.

Article Abstract

Enzyme-linked immunosorbent assay (ELISA) was used to study temporal development of murine autoantibodies against insulin and both type C and intracisternal type A retroviral antigens. The nonobese diabetic (NOD) mouse, a model for autoimmune, insulin-dependent diabetes, was compared with a related, but diabetes-resistant, strain, nonobese normal (NON). Similarly, C57BL/KsJ db/db mice (insulin-resistant model of insulin-dependent diabetes and obesity) were compared with diabetes-resistant C57BL/6 db/db mice. NOD mice developed much higher autoantibody titers than did NON mice. Whereas type C autoantibodies in NOD developed to peak titer shortly after mice were weaned, autoantibodies against insulin and p73 (group-specific antigen of the intracisternal type A particle) did not develop until shortly before, or concomitant with, the development of hyperglycemia. Two NOD mice not developing hyperglycemia during the 40-wk study period were distinguished from the mice developing diabetes by a delayed onset of insulin (but not p73) autoantibodies. Our findings suggest that in NOD mice, the appearance of insulin and p73 autoantibodies signifies that extensive underlying necrosis of beta-cells occurred. C57BL/KsJ db/db mice (with extensive beta-cell necrosis and early hyperglycemia) developed much higher autoantibody titers to insulin and p73 than did the diabetes-resistant C57BL/6 db/db mice. However, the presence of autoantibodies in normoglycemic C57BL/KsJ +/db controls demonstrated that elevated autoantibody titers alone were insufficient to produce diabetes in this model. Absorption studies indicated that autoantibodies against p73 recognized a common epitope on insulin and IgE-binding factor. The potential significance of this molecular mimicry is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.2337/diab.37.3.351DOI Listing

Publication Analysis

Top Keywords

db/db mice
20
insulin p73
16
c57bl/ksj db/db
12
nod mice
12
autoantibody titers
12
mice
11
molecular mimicry
8
autoantibodies
8
autoantibodies insulin
8
intracisternal type
8

Similar Publications

The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined.

View Article and Find Full Text PDF

miR378a-3p in serum extracellular vesicles is associated with pancreatic beta-cell mass in diabetic states.

Biochem Biophys Res Commun

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. Electronic address:

The condition in which the insulin secretory ability of pancreatic β-cells decreases in diabetes is extremely important, but there are currently no biomarkers that reflect pancreatic β-cell failure. Therefore, we conducted a search for biomarkers, using pancreatic β-cell-specific 3-Phosphoinositide-dependent protein kinase 1 (PDK1) knockout mice, which develop severe hyperglycemia due to a decrease in pancreatic β-cell mass without insulin resistance. The analysis was performed in young mice when metabolic abnormalities were not yet apparent.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Background: Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo.

View Article and Find Full Text PDF

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!