Sestrin2 (Sesn2) is a stress sensor for the mammalian target of rapamycin complex 1 (mTORC1) pathway. Aging impairs cardiac mTORC1 activation, thereby sensitizing the heart to hypertrophy. C57BL/6 J young wild-type (young WT; 4-6 months), aged WT (24-26 months), and young Sestrin2 knockout mice (Y-Sesn2 KO; 4-6 months) underwent transverse aortic constriction (TAC) for pressure overload. Cardiac expression of Sesn2 decreased with age. At 4 weeks after TAC, aged WT and Y-Sesn2 KO exhibited larger hearts and impaired cardiac function, compared with young WT mice. Augmented phosphorylation of mTOR and downstream effectors; damaged mitochondria and elevated redox markers, as well as and impaired glucose and fatty acid oxidation were observed in aged WT and Y-Sesn2 KO hearts. A pressure overload-induced interaction between Sesn2 and GTPase-activating protein activity toward Rags 2 (GATOR2), which positively regulates mTORC1, was impaired in aged WT hearts. Adeno-associated virus 9-Sesn2 treatment rescued Sesn2 expression, attenuated mTORC1 activation, and increased pressure overload tolerance in aged WT and Y-Sesn2 KO hearts. These results indicated that cardiac Sesn2 acts as a pressure overload sensor for mTORC1. Furthermore, Sesn2 deficiency may cause increased sensitivity to hypertrophy in elderly individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363709PMC
http://dx.doi.org/10.1016/j.redox.2020.101637DOI Listing

Publication Analysis

Top Keywords

pressure overload
12
aged y-sesn2
12
pressure overload-induced
8
mtorc1 activation
8
4-6 months
8
y-sesn2 hearts
8
aged
6
sesn2
6
pressure
5
cardiac
5

Similar Publications

This study investigated the sexual dimorphism in right ventricle (RV) remodeling in right heart failure susceptible Fischer CDF rats using the pulmonary artery banding (PAB) model. Echocardiography and hemodynamic measurements were performed in adult male and female Fischer CDF rats at 1- or 2-weeks post-PAB. RV systolic pressure and RV hypertrophy were significantly elevated in PAB rats compared to sham control at 1- and 2-weeks post-PAB; however, no differences were observed between male and female rats.

View Article and Find Full Text PDF

Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.

View Article and Find Full Text PDF

Background: Preeclampsia is a major hypertensive disorder of pregnancy, which may lead to severe complications, particularly in the first two weeks of the postpartum period. During the postpartum period, blood pressure levels remain high, often increasing to levels higher than those experienced during pregnancy. Furosemide, a fast-acting diuretic, reduces the intravascular volume overload and may represent an alternative to accelerate the normalization of blood pressure levels.

View Article and Find Full Text PDF

Introduction: Sensory hypersensitivity (SHS) refers to an increased sensitivity to sensory stimuli, often leading to sensory overload and adversely affecting daily functioning and well-being. This study examined the effects of three situational triggers - noise, time pressure, and cognitive load - on task performance, sensory overload, and fatigue. Additionally, we sought to explore the associations between these effects and SHS, while accounting for other influencing factors such as personality, coping mechanisms, and anxiety.

View Article and Find Full Text PDF

Negative gas adsorption transitions and pressure amplification phenomena in porous frameworks.

Chem Soc Rev

January 2025

Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.

Nanoporous solids offer a wide range of functionalities for industrial, environmental, and energy applications. However, only a limited number of porous materials are responsive, the nanopore dynamically alters its size and shape in response to external stimuli such as temperature, pressure, light or the presence of specific molecular stimuli adsorbed inside the voids deforming the framework. Adsorption-induced structural deformation of porous solids can result in unique counterintuitive phenomena.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!