The Impact of Placement Errors on the Tumor Coverage in MRI-Guided Focal Cryoablation of Prostate Cancer.

Acad Radiol

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St. Boston, 02115 Massachusetts, USA.

Published: June 2021

AI Article Synopsis

  • This study investigates the accuracy of cryo-needle placement in focal cryoablation treatments for prostate cancer, highlighting its importance for effective tumor ablation.
  • It uses Monte Carlo simulations based on MRI data from 15 patients to model how placement errors affect tumor coverage and the chances of residual cancer.
  • Findings show that, even with placement errors of up to 3 mm, the coverage remains high with two or more needles, but the success rates vary significantly based on the temperature targets used during the procedure.

Article Abstract

Rationale And Objectives: There have been multiple investigations defining and reporting the effectiveness of focal cryoablation as a treatment option for organ-confined prostate cancer. However, the impact of cryo-needle/probe placement accuracy within the tumor and gland has not been extensively studied. We analyzed how variations in the placement of the cryo-needles, specifically errors leading to incomplete ablation, may affect prostate cancer's resulting cryoablation.

Materials And Methods: We performed a study based on isothermal models using Monte Carlo simulations to analyze the impact of needle placement errors on tumor coverage and the probability of positive ablation margin. We modeled the placement error as a Gaussian noise on the cryo-needle position. The analysis used retrospective MRI data of 15 patients with biopsy-proven, unifocal, and MRI visible prostate cancer to calculate the impact of placement error on the volume of the tumor encompassed by the -40°C and -20°C isotherms using one to four cryo-needles.

Results: When the standard deviation of the placement error reached 3 mm, the tumor coverage was still above 97% with the -20°C isotherm, and above 81% with the -40°C isotherm using two cryo-needles or more. The probability of positive margin was significantly lower considering the -20°C isotherm (0.04 for three needles) than using the -40°C isotherm (0.66 for three needles).

Conclusion: The results indicated that accurate cryo-needle placement is essential for the success of focal cryoablation of prostate cancer. The analysis shows that an admissible targeting error depends on the lethal temperature considered and the number of cryo-needles used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910318PMC
http://dx.doi.org/10.1016/j.acra.2020.07.013DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
tumor coverage
12
focal cryoablation
12
placement error
12
impact placement
8
placement errors
8
errors tumor
8
cryoablation prostate
8
probability positive
8
-20°c isotherm
8

Similar Publications

On the Biosynthesis of Bioactive Tryptamines in Black Cohosh ( L.).

Plants (Basel)

January 2025

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.

Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.

View Article and Find Full Text PDF

The radiotracer [F]JK-PSMA-7, a prostate cancer imaging agent for positron emission tomography (PET), was previously synthesized by indirect radiofluorination using an F-labeled active ester as a prosthetic group, which had to be isolated and purified before it could be linked to the pharmacologically active Lys-urea-Glu motif. Although this procedure could be automated on two-reactor modules like the GE TRACERLab FX2N (FXN) to afford the tracer in modest radiochemical yields (RCY) of 18-25%, it is unsuitable for cassette-based systems with a single reactor. To simplify implementation on an automated synthesis module, the radiosynthesis of [F]JK-PSMA-7 was devised as a one-pot, two-step reaction.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

: ACEIs protect against radiation pneumonitis by reducing angiotensin II production, oxidative stress, and inflammation. This study highlights the significance of concurrent angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) use in radiotherapy by evaluating its impact on radiotherapy-related side effects and survival outcomes, addressing the gap in existing research and providing insights to guide clinical practice in oncology. : The literature was retrieved from the MEDLINE, EMBASE, Web of Science, and Scopus databases from January 2000 to October 2024.

View Article and Find Full Text PDF

Overexpression of the gonadotropin-releasing hormone receptor (GnRH-R) plays a vital role in the advancement of reproductive malignancies such as ovarian, endometrial, and prostate cancer. Peptidomimetic GnRH antagonists are a substantial therapeutic development, providing fast and reversible suppression of gonadotropins by directly blocking GnRH-R. Unlike typical GnRH agonists, these antagonists prevent the early hormonal flare, have a faster onset of action, and have a lower risk of cardiovascular problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!