Increasing contributions of prymnesiophytes such as and to Barents Sea (BS) phytoplankton production have been suggested based on observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a () concentration or indices of pigment packaging may, however, fail to distinguish from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in concentrations, reported by previous researchers, may be partly explained by increasing frequencies of blooms. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481673 | PMC |
http://dx.doi.org/10.1098/rsta.2019.0357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!