Two bismuth(III) halides hybrids with room-temperature phosphorescence (RTP), namely, [BPy][BiCl(bpym)] (, BPy = -butylpyridinium) and [EPy][BiCl(bpym)] (, EPy = -ethylpyridinium), were synthesized and characterized. Structural comparison reveals that and possess similar anionic zigzaglike chain of [BiCl(bpym)]; however, different packing modes of anion/cations and thus different weak interactions. Interestingly, the utilization of pyridinium cations with different length of alkyl chain could tune the RTP behaviors efficiently. The RTP quantum yield (QY) is increased more than 5-fold from to probably due to more rigid structure of arising from the additional H-bond and anion-π interactions, as confirmed by Hirshfeld surfaces analyses and calculations. Moreover, additional π-π interactions in could stabilize the triplet excitons, leading to an average lifetime of (11.36 ms at 77 K and 1.407 ms at 298 K) being higher than (0.3618 ms at 77 K and 0.07511 ms at 298 K). Density functional theory (DFT) calculations confirm that inorganic moiety to organic ligand charge-transfer (IOCT) is involved in the phosphorescence process. The present work provides a new sight into the design of RTP metal halides through studying the structure-RTP relationship.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c01883DOI Listing

Publication Analysis

Top Keywords

modulation structure
4
structure photoluminescence
4
photoluminescence bismuthiii
4
bismuthiii chloride
4
chloride hybrids
4
hybrids altering
4
altering ionic-liquid
4
ionic-liquid cations
4
cations bismuthiii
4
bismuthiii halides
4

Similar Publications

Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.

View Article and Find Full Text PDF

Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.

View Article and Find Full Text PDF

Low-Level Fe Doping in CoMoO Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting.

Inorg Chem

January 2025

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!