We systematically investigate an impact of the size and content of a quantum (QM) region, treated at the density functional theory level, in embedding calculations on one- (OPA) and two-photon absorption (TPA) spectra of the following fluorescent proteins (FPs) models: green FP (avGFP) with neutral (avGFP-n) and anionic (avGFP-a) chromophore as well as Citrine FP. We find that amino acid (a.a.) residues as well as water molecules hydrogen-bonded (h-bonded) to the chromophore usually boost both OPA and TPA processes intensity. The presence of hydrophobic a.a. residues in the quantum region also non-negligibly affects both absorption spectra but decreases absorption intensity. We conclude that to reach a quantitative description of OPA and TPA spectra in multiscale modeling of FPs, the quantum region should consist of a chromophore and most of a.a. residues and water molecules in a radius of 0.30-0.35 nm ( 200-230 atoms) when the remaining part of the system is approximated by the electrostatic point-charges. The optimal size of the QM region can be reduced to 80-100 atoms by utilizing a more advanced polarizable embedding model. We also find components of the QM region that are specific to a FP under study. We propose that the F165 a.a. residue is important in tuning the TPA spectrum of avGFP-n but not other investigated FPs. In the case of Citrine, Y203 and M69 a.a. residues must definitely be part of the QM subsystem. Furthermore, we find that long-range electrostatic interactions between the QM region and the rest of the protein cannot be neglected even for the most extensive QM regions ( 350 atoms).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586329 | PMC |
http://dx.doi.org/10.1021/acs.jctc.0c00602 | DOI Listing |
iScience
January 2025
Department of Electrical and Computering Engineering, Binghamton University, Binghamton, NY 13902, USA.
Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system, not only enables observing genuine quantum photonic PT symmetry amid phase-sensitive amplification (PSA) and loss in the presence of Langevin noise but also reveals an additional classical-to-quantum (C2Q) transition in noise fluctuations. In contrast to the previous setup, our exploration of an alternative system assuming no loss involves a type-II PSA-only scheme. This scheme facilitates dual opposing quadrature-PT symmetry, offering a comprehensive and complementary comprehension of C2Q transitions and PT-enhanced quantum sensing with optimal performance in the symmetry unbroken region.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Maebashi-Institute of Technology, Systems Life Engineering, Gunma, 371-0816 Japan. Electronic address:
Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.
View Article and Find Full Text PDFBiology (Basel)
January 2025
School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China.
Neural oscillations observed during semantic processing embody the function of brain language processing. Precise parameterization of the differences in these oscillations across various semantics from a time-frequency perspective is pivotal for elucidating the mechanisms of brain language processing. The superlet transform and cluster depth test were used to compute the time-frequency representation of oscillatory difference (ODTFR) between neural activities recorded by optically pumped magnetometer-based magnetoencephalography (OPM-MEG) during processing congruent and incongruent Chinese semantics.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.
The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Argonaute.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!