BACKGROUND Long-non-coding RNA (lncRNA) SNHG15 has been reported to be an aberrantly expressed lncRNA in patients with ischemic stroke, but its role in neuronal injury following ischemic stroke remains unclear. We hypothesized that this lncRNA is associated with the pathogenesis of ischemic stroke. MATERIAL AND METHODS A mouse model of ischemic stroke was established by middle cerebral artery occlusion (MCAO). A neurogenic mouse cell line Neuro-2a (N2a) was subjected to oxygen-glucose deprivation (OGD) for in vitro experiments. Expression of SNHG15, microRNA-18a (miR-18a), and CXCL13 in mouse brain and in OGD-treated N2a cells was determined. Altered expression of SNHG15 and miR-18a was introduced to detect their roles in N2a cell viability and apoptosis. Targeting relationships between miR-18a and SNHG15 or CXCL13 were validated by luciferase assays. Cells were treated with the ERK/MEK antagonist U0126 to assess the role of the ERK/MEK signaling pathway in N2a cell growth. RESULTS SNHG15 and CXCL13 were overexpressed and miR-18a was underexpressed in MCAO-induced mice and OGD-treated N2a cells. Silencing of SNHG15 or overexpression of miR-18a promoted cell viability, while decreased cell apoptosis induced by OGD; however, subsequent disruption of the ERK/MEK signaling pathway reversed these effects. SNHG15 was found to bind to miR-18a, which could further target CXCL13. CONCLUSIONS Silencing of SNHG15 led to CXCL13 upregulation through sequestering miR-18a and the following ERK/MEK activation, thus enhancing viability while reducing apoptosis of N2a cells. SNHG15 may serve as a novel target for ischemic stroke treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480088PMC
http://dx.doi.org/10.12659/MSM.923610DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
24
n2a cells
12
snhg15
10
neuronal injury
8
injury ischemic
8
expression snhg15
8
ogd-treated n2a
8
n2a cell
8
cell viability
8
snhg15 cxcl13
8

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Cardiovascular Outcomes With Antidiabetic Drugs in People With Type 2 Diabetes and a Prior Stroke.

Mayo Clin Proc

January 2025

Department of Internal Medicine, Korea University Anam Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea. Electronic address:

Objective: To assess the comparative effectiveness of sodium-glucose cotransporter 2 inhibitors (SGLT2i), thiazolidinediones (TZD), and dipeptidyl peptidase-4 inhibitors (DPP-4i) for the cardiorenal outcomes and mortality in individuals with type 2 diabetes and a prior stroke.

Patients And Methods: Using the Korean National Health Insurance Service database from 2014 to 2021, a new-user cohort was established through propensity score matching for SGLT2i, TZD, and DPP-4i. The primary outcomes were major adverse cardiovascular events (MACE), comprising myocardial infarction, ischemic stroke, and cardiovascular death.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the relationship between mortality and the frontal QRS-T angle (FQRS-TA), obtained by calculating the absolute difference between the QRS and T waves electrocardiographically (ECG), in patients diagnosed with ischemic stroke (IS).

Methods: This research is a retrospective and cross-sectional study. The diagnosis of IS was confirmed through brain imaging and physical examination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!