Brain connectivity profiles seeding from deep brain stimulation (DBS) electrodes have emerged as informative tools to estimate outcome variability across DBS patients. Given the limitations of acquiring and processing patient-specific diffusion-weighted imaging data, a number of studies have employed normative atlases of the human connectome. To date, it remains unclear whether patient-specific connectivity information would strengthen the accuracy of such analyses. Here, we compared similarities and differences between patient-specific, disease-matched and normative structural connectivity data and their ability to predict clinical improvement. Data from 33 patients suffering from Parkinson's Disease who underwent surgery at three different centers were retrospectively collected. Stimulation-dependent connectivity profiles seeding from active contacts were estimated using three modalities, namely patient-specific diffusion-MRI data, age- and disease-matched or normative group connectome data (acquired in healthy young subjects). Based on these profiles, models of optimal connectivity were calculated and used to estimate clinical improvement in out of sample data. All three modalities resulted in highly similar optimal connectivity profiles that could largely reproduce findings from prior research based on this present novel multi-center cohort. In a data-driven approach that estimated optimal whole-brain connectivity profiles, out-of-sample predictions of clinical improvements were calculated. Using either patient-specific connectivity (R = 0.43 at p = 0.001), an age- and disease-matched group connectome (R = 0.25, p = 0.048) and a normative connectome based on healthy/young subjects (R = 0.31 at p = 0.028), significant predictions could be made. Our results of patient-specific connectivity and normative connectomes lead to similar main conclusions about which brain areas are associated with clinical improvement. Still, although results were not significantly different, they hint at the fact that patient-specific connectivity may bear the potential of explaining slightly more variance than group connectomes. Furthermore, use of normative connectomes involves datasets with high signal-to-noise acquired on specialized MRI hardware, while clinical datasets as the ones used here may not exactly match their quality. Our findings support the role of DBS electrode connectivity profiles as a promising method to investigate DBS effects and to potentially guide DBS programming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2020.117307 | DOI Listing |
Nat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFJ Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
J Ethnopharmacol
January 2025
Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, China.
Ethnopharmacological Relevance: Cepharanthine (CEP) is an alkaloid extracted from Stephania cephalantha Hayata, a traditional Chinese medicine (TCM) renowned for its heatclearing and dehumidifying properties. For centuries, Stephania cephalantha Hayata has been employed in the treatment of a wide range of diseases, including pain, edema, inflammation, and fever.
Aim Of The Study: Our research aims to investigate the role and mechanism of Cepharanthine in ameliorating uric acid (UA) induced neuroinflammatory responses.
Curr Opin Crit Care
January 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).
Purpose Of Review: This narrative review discusses the mechanisms connecting gut dysbiosis to adverse clinical outcomes in critically ill patients and explores potential therapeutic strategies.
Recent Findings: In recent years, the study of microbiota in ICUs has gained attention because of its potential effects on patient outcomes. Critically ill patients often face severe conditions, which can compromise their immune systems and lead to opportunistic infections from bacteria typically harmless to healthy individuals.
Eur J Neurol
February 2025
Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!