GDF11 replenishment protects against hypoxia-mediated apoptosis in cardiomyocytes by regulating autophagy.

Eur J Pharmacol

Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and HealthSciences University of Melbourne, Melbourne VIC, 3010, Australia.

Published: October 2020

GDF11 has been reported to play a critical role in rejuvenating hypertrophy heart, skeletal muscle, and blood vessel regeneration in aged mice. Whether GDF11 can regulate autophagy in cardiomyocytes remains largely unknown. Thus, the purpose of the present study was to investigate the effects of GDF11 on cardiomyocyte autophagy induced by hypoxia, in addition to the underlying mechanisms. By using the MTT assay, Flow cytometry assay, LIVE/DEAD® Viability/Cytotoxicity Kit Stains and TUNEL assay, we found that exogenous GDF11 decreased apoptosis caused by prolonged hypoxia in cardiomyocytes. The expression of GDF11 was decreased obviously both in the cardiac tissue of myocardial infarction mice and the hypoxia treated cardiomyocytes. Protein levels of cleaved caspase-3, p-AMPK, SQSTM1, LC3B-I/II and GDF11 were detected by western blot. Autophagosomes and autolysosomes were identified by confocal laser microscopy after transfecting with the mRFP-eGFP-LC3 plasmids. Antibody against GDF11 (anti-GDF11) was used to inhibit the function of GDF11. At the molecular level, exogenous GDF11 increased AMPK function and enhanced autophagy activity. Anti-GDF11 inhibited autophagy and aggravated hypoxia-induced apoptosis in cardiomyocytes. Thus, GDF11 might be a potential target for myocardial infarction therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173495DOI Listing

Publication Analysis

Top Keywords

gdf11
11
apoptosis cardiomyocytes
8
exogenous gdf11
8
gdf11 decreased
8
myocardial infarction
8
cardiomyocytes
5
autophagy
5
gdf11 replenishment
4
replenishment protects
4
protects hypoxia-mediated
4

Similar Publications

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

Sotatercept in pulmonary hypertension and beyond.

Eur J Clin Invest

January 2025

Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.

Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.

View Article and Find Full Text PDF

GDF11 improves cardiac repair after myocardial infarction by reducing Macrophage infiltration and attenuating their inflammatory Properties.

Int Immunopharmacol

January 2025

Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Transvascular Implantation Devices, China; Heart Regeneration and Repair Key Laboratory of Zhejiang province, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China. Electronic address:

View Article and Find Full Text PDF

Protogenin facilitates trunk-to-tail HOX code transition via modulating GDF11/SMAD2 signaling in mammalian embryos.

Commun Biol

December 2024

Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).

During embryogenesis, vertebral axial patterning is intricately regulated by multiple signaling networks. This study elucidates the role of protogenin (Prtg), an immunoglobulin superfamily member, in vertebral patterning control. Prtg knockout (Prtg) mice manifest anterior homeotic transformations in their vertebral columns and significant alterations in homeobox (Hox) gene expression.

View Article and Find Full Text PDF

Duplication of methyl-CpG-binding protein 2 (MECP2) gene causes MECP2 duplication syndrome (MDS). To normalize the duplicated MECP2 in MDS, we developed a high-fidelity Cas13Y (hfCas13Y) system capable of targeting the MECP2 (hfCas13Y-gMECP2) messenger RNA for degradation and reducing protein levels in the brain of humanized MECP2 transgenic mice. Moreover, the intracerebroventricular adeno-associated virus (AAV) delivery of hfCas13Y-gMECP2 in newborn or adult MDS mice restored dysregulated gene expression and improved behavior deficits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!