Perfect annealing between microRNAs (miRNAs) and messenger RNAs (mRNAs) was computationally searched at a broad scale in the human genome to determine whether theoretical pairing is restrictively represented in functional subnetworks or is randomly distributed. Massive RNA interference (RNAi) pairing motifs in genes constitute a remarkable subnetwork that displays highly genetically and biochemically interconnected genes. These analyses show unexpected repertoires of genes defined by their congruence in comatching with miRNAs at numerous sites and by their interconnection based on protein/protein interactions or proteins regulating the activity of others. This offers insights into the putatively coregulated homeostasis of large networks of genes by RNAi, whereas other networks seem to be independent of this regulatory mode. Genes accordingly defined by theoretical RNAi pairing cluster mainly in subnetworks related to cellular, metabolic and developmental processes and their regulation. Indeed, genes harboring numerous potential sites of hybridization with miRNAs are highly enriched with GO terms depicting the abovementioned processes and are grouped in a subnetwork of genes that are significantly more highly connected than they would be according to a random distribution. The significant number of interacting genes that present numerous potential comatches with miRNAs suggests that they may be under the control of the integrative and concerted action of multiple miRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2020.107366 | DOI Listing |
Syst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Genome Biol Evol
January 2025
Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.
This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!