Interferon-gamma (IFN-γ) is critical for central nervous system (CNS) functions and it may be a promising treatment to stimulate CNS regeneration. However, previous studies reported inconsistent results, and the molecular mechanisms remain controversial. Here we show that IFN-γ-treated mice via intraperitoneal injection have elevated IFN-γ level in central hippocampus and superior cognitive behaviors IFN-γ could activates the level of protein expression of Wnt7a, β-catenin, and CyclinD1 in Wnt/β-catenin signaling pathway of mice hippocampus. Functional and mechanism analysis in vitro revealed that IFN-γ promoted the proliferation and differentiation in primary cultured neural stem cells (NSCs). STAT1 was accountable for IFN-γ-induced activation of the β-catenin promoter, and IFN-γ increased the binding affinity of STAT1 to β-catenin promoter based on luciferase activity and chromatin immunoprecipitation. Our results suggest that IFN-γ exerts many effects ranging from cognitive function in vivo to NSC proliferation, self-renewal, and differentiation in vitro. It does so by recruiting STAT1 to the β-catenin promoter, enhancing cis-regulation by STAT1, and ultimately activating Wnt/β-catenin signaling. In this study, we first found that STAT1 was recruited into the promoter of β-catenin to activate β-catenin expression, and this effect was regulated by IFN-γ. It is also discovered firstly that Wnt/β-catenin and JAK/STAT pathways form cross-links through STAT1. Promoting neurogenesis through immune stimulation might be a promising strategy for repairing the diseased/injured CNS. This study provides a scientific basis for immunomodulation to promote nerve regeneration and offer a new therapeutic direction for central nervous system regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2020.08.018 | DOI Listing |
Genome Biol
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.
View Article and Find Full Text PDFClin Epigenetics
December 2024
Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.
Background: The RAR-related orphan receptor alpha (RORA), a circadian clock molecule, is highly associated with anti-oncogenes. In this paper, we defined the precise action and mechanistic basis of RORA in ESCC development under hypoxia.
Methods: Expression analysis was conducted by RT-qPCR, western blotting, immunofluorescence (IF), and immunohistochemistry (IHC) assays.
Commun Biol
December 2024
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.
View Article and Find Full Text PDFJ Plant Res
December 2024
College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
Breeders adjust wheat heading dates to improve regional adaptability and reduce or mitigate yield losses caused by meteorological disasters, pests and diseases. The Ppd-1 genes play a crucial role in determining wheat sensitivity to changes in day-length and serve as key regulators of heading dates once the vernalization requirement is satisfied. In this study, we identified a new allelic variant of the promoter region, Ppd-B1a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!