Spontaneous Activity of Neuronal Ensembles in Mouse Motor Cortex: Changes after GABAergic Blockade.

Neuroscience

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico. Electronic address:

Published: October 2020

The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.08.025DOI Listing

Publication Analysis

Top Keywords

spontaneous activity
16
neuronal ensembles
12
pv+ neurons
12
mouse motor
8
motor cortex
8
temporal sequences
8
neurons
8
cortical spontaneous
8
epileptiform discharges
8
gaba transmission
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!