A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genomic and physiological characterization of an antimony and arsenite-oxidizing bacterium Roseomonas rhizosphaerae. | LitMetric

Genomic and physiological characterization of an antimony and arsenite-oxidizing bacterium Roseomonas rhizosphaerae.

Environ Res

Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, PR China.

Published: December 2020

Antimony (Sb) and arsenic (As) are two toxic metalloids, which are listed as priority environmental pollutants by the European Union and the U.S. Environmental Protection Agency (EPA). Antimony taken up by plants enters the food chain and poses a threat to human health. Microbial oxidation of antimonite (Sb(III)) and arsenite (As(III)) to the less toxic antimonate (Sb(V)) and arsenate (As(V)), has great potential for the immobilization of Sb and As in the environment. A heterotrophic aerobic bacterium, Roseomonas rhizosphaerae YW11, oxidized both Sb(III) and As(III) in the modified R2A medium. In the same medium, strain YW11 preferred to oxidize Sb(III), whereas the As(III) oxidation rate was only 50%. Genomic analysis of YW11 confirmed the presence of several As-resistance gene islands. The aioAB genes encoding As(III) oxidase were also induced by Sb(III). The role of aioA in Sb(III) oxidation and resistance was confirmed by disrupting this gene in strain YW11, resulting in the loss of Sb(III) oxidation abilities. This study documents an enzymatic basis for microbial Sb(III) oxidation in strain YW11, which is a novel bacterial strain showing simultaneous oxidation of Sb(III) and As(III), and may be a potential candidate for bioremediation of heavy metal-contaminated environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.110136DOI Listing

Publication Analysis

Top Keywords

sbiii asiii
12
strain yw11
12
sbiii oxidation
12
bacterium roseomonas
8
roseomonas rhizosphaerae
8
sbiii
8
oxidation
6
asiii
5
yw11
5
genomic physiological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!