Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimony (Sb) and arsenic (As) are two toxic metalloids, which are listed as priority environmental pollutants by the European Union and the U.S. Environmental Protection Agency (EPA). Antimony taken up by plants enters the food chain and poses a threat to human health. Microbial oxidation of antimonite (Sb(III)) and arsenite (As(III)) to the less toxic antimonate (Sb(V)) and arsenate (As(V)), has great potential for the immobilization of Sb and As in the environment. A heterotrophic aerobic bacterium, Roseomonas rhizosphaerae YW11, oxidized both Sb(III) and As(III) in the modified R2A medium. In the same medium, strain YW11 preferred to oxidize Sb(III), whereas the As(III) oxidation rate was only 50%. Genomic analysis of YW11 confirmed the presence of several As-resistance gene islands. The aioAB genes encoding As(III) oxidase were also induced by Sb(III). The role of aioA in Sb(III) oxidation and resistance was confirmed by disrupting this gene in strain YW11, resulting in the loss of Sb(III) oxidation abilities. This study documents an enzymatic basis for microbial Sb(III) oxidation in strain YW11, which is a novel bacterial strain showing simultaneous oxidation of Sb(III) and As(III), and may be a potential candidate for bioremediation of heavy metal-contaminated environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2020.110136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!