Background: The use of statins to lower high serum cholesterol levels may be associated with a number of adverse reactions, including severe myopathy. The solute carrier organic anion transporter 1B1 (SLCO1B1) gene, which encodes the organic anion-transporting polypeptide OATP1B1, is related to the intracellular transport of statins. The aim of this research was to study the association of rs2306283 and rs4149056 genetic polymorphism of the SLCO1B1 gene with the development of statin-induced myopathy in Jordanian diabetics receiving statins.

Methods: We included 413 patients attending the Diabetes Clinics of the National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan. The study was approved by the Institutional Review Board of NCDEG. Myopathy was defined as the elevation of creatine kinase more than 3 times the upper limit of normal. Every subject signed an informed consent form and donated 3-5 mL of venous blood. Genome DNA was extracted from lymphocytes of peripheral blood. Genotypes were identified using the Tetra Amplification Refractory Mutation System of SLCO1B1.

Results: The minor allele frequencies of rs2306283 [G] and rs4149056 [C] were 0.38 and 0.23, respectively. The two SNPs followed the Hardy-Weinberg equilibrium. The development of SIM was significantly associated with the homozygous and heterozygous minor allele genotype of rs4149056 (CC and CT), and the homozygous wild type allele genotype of rs2306283 (AA). There was no linkage disequilibrium between the two SNPs in the studied subgroups.

Conclusion: Genetic polymorphism in the SLCO1B1 Gene is a risk factor for the development of SIM in Jordanian patients.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574884715666200827105612DOI Listing

Publication Analysis

Top Keywords

slco1b1 gene
16
rs2306283 rs4149056
8
statin-induced myopathy
8
myopathy jordanian
8
jordanian diabetics
8
genetic polymorphism
8
polymorphism slco1b1
8
minor allele
8
development sim
8
allele genotype
8

Similar Publications

Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.

View Article and Find Full Text PDF

Purpose: Atorvastatin is commonly used to treat dyslipidemia; however, individual responses vary considerably. This study endeavors to evaluate the relationship between polymorphisms in the coding sequence (CDS) of SLCO1B1 gene and blood lipid levels before and after atorvastatin treatment among the Chinese Han adults with dyslipidemia.

Patients And Methods: A total of 165 Chinese Han adults undergoing atorvastatin therapy were enrolled in this study and followed up quarterly.

View Article and Find Full Text PDF

Background: Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) serves as an important option for patients without an HLA matched donor in treating hematological disorders, while patients may experience various complications after transplantation. Mycophenolate mofetil (MMF), a cornerstone drug for graft-versus-host disease (GvHD) prophylaxis, effectively reduces the incidence of acute GvHD, and the efficacy of MMF varies among individuals associated with MMF-related transporters and metabolic enzymes single nucleotide polymorphisms (SNPs). However, limited studies have systematically reported the correlations between the MMF-related SNPs and post-transplant complications.

View Article and Find Full Text PDF

Aligned with the mission of the Dutch Pharmacogenetics Working Group (DPWG) to promote the implementation of pharmacogenetics (PGx), this guideline is specifically designed to optimize pharmacotherapy of cholesterol lowering medication (statins) and glucose lowering medication (sulfonylureas). The SLCO1B1 c.521 T > C variant reduces the activity of the SLCO1B1 transporter involved in statin transport out of the blood into the liver.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to develop a quick and accurate method for detecting genetic variants related to drug transport, which is crucial for personalized medicine, using Duplex Fluorescence Melting Curve Analysis (DFMCA).
  • Researchers collected blood samples from 54 individuals, extracted DNA, and performed PCR to analyze two common genetic polymorphisms, confirming the method's effectiveness with melting curve analysis.
  • The DFMCA method proved to be efficient, accurately identifying genotypes within 2 hours and showing reliability in detecting allele frequencies consistent with prior studies among Han Chinese individuals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!