Evaluating the use of synchrotron X-ray spectroscopy in investigating brominated flame retardants in indoor dust.

Environ Sci Pollut Res Int

4M110, Health Sciences Centre, Division of Community Health Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada.

Published: November 2020

Brominated flame retardants (BFRs) are commonly used in consumer products and they shed off these products and eventually build up in household dust. Polybrominated diphenyl ethers (PBDEs), in particular, are known endocrine-disrupting chemicals affecting various hormone syntheses. Portable X-ray fluorescence spectroscopy (XRF) is the most common non-destructive method in identifying BFRs in environmental samples. However, the method is insensitive to bromine speciation. Synchrotron-based XRF has been shown to have very low detection limits (< 1 μg/g) that is suitable for detecting BFRs and can be combined with X-ray absorption near-edge spectroscopy (XANES) to identify the bromine species present in the household dust. Twenty indoor dust samples were collected from rural homes in Newfoundland (Canada) to assess the use of synchrotron-based techniques to identify BFRs. Synchrotron-based XRF analysis identified bromine in all the samples, with concentrations ranging from 2-19 μg/g. XANES analysis identified organic-based bromine species in several samples that are likely BFRs based on the spectral line shape. The accuracy of using XANES to identify BFRs is highly dependent on the source and size of the dust samples. Therefore, for future research, it is important to take into account the sources of dust sample and to focus on fine dust particles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10623-4DOI Listing

Publication Analysis

Top Keywords

brominated flame
8
flame retardants
8
indoor dust
8
household dust
8
synchrotron-based xrf
8
xanes identify
8
bromine species
8
dust samples
8
identify bfrs
8
analysis identified
8

Similar Publications

Associations between brominated flame retardants exposure and non-alcoholic fatty liver disease: Mediation analysis in the NHANES.

Ecotoxicol Environ Saf

January 2025

Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:

Background: Exposure to brominated flame retardants (BFRs) may negatively impact human health. The association of BFRs with nonalcoholic fatty liver disease (NAFLD) in the general population is unclear. Meanwhile, limited studies have investigated the potential role of oxidative stress and inflammation in this link.

View Article and Find Full Text PDF

Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices.

View Article and Find Full Text PDF

Based on the third Chinese National Human Milk Survey (NHMS) conducted in 2016-2019, three typical legacy brominated flame retardants (BFRs), namely decabromodiphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecanes (HBCDDs, sum of three isomers), were measured in 100 pooled human milk samples collected from 24 provinces across China. The median concentrations of BDE-209, TBBPA and HBCDDs were 0.27, 0.

View Article and Find Full Text PDF

Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations.

Sci Total Environ

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.

View Article and Find Full Text PDF

Environmentally relevant concentrations of DBDPE (decabromodiphenyl ethane) induce intestinal toxicity in silkworms (Bombyx mori L.).

Environ Pollut

January 2025

Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China. Electronic address:

Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!